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Introduction 
 Alain Carrier wrote an equation-packed memo on May 27, 1997, deriving the ac-
celerations needed to command the mirror between scan states.  Independently, Doug 
Woodard and I derived comparable results using a graphical analysis on a blackboard 
in Boulder last spring.  This memo relates those two analyses. 

 A second portion of this memo derives and documents the algorithms for “safing” 
the mirror, whereby a single command causes the mirror to quickly move to a prede-
fined orientation.  A final section discusses “emergency stop”, a limit check that will be 
built into the algorithms to make sure the mirror is never commanded past its limits. 

The algorithms will be available to evaluate and pretest proposed scan table en-
tries, allowing the user to determine peak accelerations, average power, maximum an-
gular velocity, and extreme travels, to confirm that the table entries are consistent with 
design guidelines. 

This memo derives the algorithms for the simple “constant acceleration” profile.  
As described in an accompanying memo (SW-LOC-294), other acceleration profiles are 
also possible, such as the “sine bell” (a half cycle of the sine wave) and the “versine 
function” (sine-squared).  Each of these has advantages and disadvantages, as is dis-
cussed in that memo.  Also, each of them scales directly from the parameters derived in 
this memo. 

Normal Operation 
 The mirror motions are dictated by entries in the scan table.  This table has five 
items per entry: time interval ∆t, az and el positions θa and θe, and az and el angular ve-
locities ωa and ωe. The ∆t is the time 
interval allowed for the mirror to 
reach the specified orientation, at 
which time it is to have the specified 
velocity.  There is no need to tabu-
late the angular accelerations αa 
and αe, as they can be derived from 
the given information.  The units 
used are specified elsewhere: all 
that is important here is that they 
are consistent—if ∆t is given in se-
conds and θ in µrad, then α will be 
expressed in µrad/sec2. 
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 It is possible that the  chosen 
state (∆t, θa, θe, ωa, ωe) can be 
reached from the previous state 
with a constant acceleration (case 
“A”, shown in Fig. 1a), where veloci-
ty is given by the slopes of the ar-
rows.  However, in general, the ac-
celeration needs to change over the 
time interval in order to meet both 
the desired endpoint position and 
velocity (case “B”, Fig. 1b).  A sim-
ple solution is to divide the time in-
terval in two, and use one constant acceleration over the first part of the interval, and a 
different constant acceleration over the rest. 

 Method for solution: plot velocity as a function of time: by assuming constant ac-
celerations, the velocity plots will be straight lines.  Figure 2a shows the velocity as a 
function of time for case “A”: the two dots indicate the initial velocity and the desired ve-
locity at the next state.  The numbers “worked out” in case “A”: the change in angle (θ1 - 
θ0) is equal to the time interval (∆t) times the mean of the end-point velocities 
((ω1+ω0)/2): thus the acceleration can be constant (zero in this example) over the full ∆t 
interval. The change in position is the integral of velocity over time, and is equal to the 
area of the rectangle. 

 For case “B”, the numbers didn’t “work out”, and so the mirror has to accelerate 
part of the time and then decelerate the other part.  This is apparent in Fig. 2b: the ve-
locity increases part of the time and then decreases.  The change in position is again 
the area under the curve, so nearly any desired state can be made to work out by the 
appropriate choice of the intermediate value.  One of the points of Alain’s analysis is 
that the optimal time for the intermediate point is at the exact midpoint of the time inter-
val (0.5∆t).  For constant accelerations, the accelerations are given by the slopes of the 
line segments: after all, acceleration is the change in velocity per unit time. 

 Time to derive equations.  Both azimuth and 
elevation are treated the same, so I’ll drop the a and e 
subscripts.  Assume two equal parts to the time inter-
val ∆t, with a constant acceleration over the first half 
and a possibly different acceleration for the second 
half.  Use the subscript ‘0’ to indicate the state at the 
beginning of the time interval, ‘1’ to indicate at the end, 
and ‘m’ at the midpoint (see Fig. 3) 

 The change in angle θ1 - θ0 = ( )ω t dt
t

0

∆

∫  = the 

area under the curve = ½ (ω0+ωm)·0.5∆t + ½ 
(ωm+ω1)·0.5∆t.  Solve for ωm in terms of the known ini-
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tial state θ0, ω0 and final state θ1, ω1, and the time interval ∆t:  
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Similarly, the acceleration for the second half of the time interval is 
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(This is the same, after appropriate variable renaming and rearranging, as Alain’s Eq. 
17a and 17b.  Note that either or both αF and αS can be positive or negative.) 

With the above values for acceleration, which are determined using only known 
values, the mirror will have the required velocity while at the appropriate angle at the 
appropriate time.  The drawback is that the mirror might be “jerked” (depending on the 
control-loop algorithm in use), an effect described by the technical term “jerk”, referring 
to the third derivative with respect to time.  If one constant acceleration αF is used for 
the first half of the time interval, and a second constant acceleration αS is used for the 
second, then the mirror may be jerked at the mid-interval transition; it may also be 
jerked at the end of the interval when the next acceleration is used.  (If a feedback con-
trol system, which has a finite bandwidth, is used in place of feedforward, the system is 
not jerked.)   Both the sine-bell and the versine acceleration profiles are continuous in 
acceleration, meaning that they are jerk-free; the versine function is also continuous in 
higher-order time derivatives, which may be beneficial to the electronics—see SW-
LOC-294. 

For the constant acceleration profile, it is apparent from Fig. 2b that the extreme 
velocity during a scan will either be an endpoint of a time interval (which is specified by 
the user in the scan table), or at the midpoint; it turns out that the other acceleration 
profiles have the extreme velocities at the same points.  I recommend that the user run 
the proposed scan table through the test algorithm to verify that the peak velocity ωm is 
within limits. 

Neglecting friction, the acceleration equations accurately reflect the torque need-
ed for the azimuth scan.  The elevation scan has a restorative spring to push against, 
so the torque will not be simply the product of inertia and acceleration.  The control al-
gorithms will compensate for friction, spring torque, etc., in calculating the current that 
needs to be commanded for the motors. 



SW-LOC-293 5 12/18/2012 

Safing 
The mirror may be commanded to go to “safe mode”, which means that the mir-

ror is to move from whatever current initial condition (position θI and velocity ωI in each 
axis, az and el), to being at rest (ω=0) at the safe position θS, in as short a period as 
practical.  Three alternatives to be considered prior to coding: (1) the algorithm can im-
mediately begin moving towards the safe position; (2) to avoid jerks, the algorithm can 
complete whatever motion is currently in progress (go forward to the next half-interval 
time) before moving to the safe position; or (3) complete the motion if the magnitude of 
the acceleration is above some threshold, otherwise start the new command immedi-
ately.  The initial release version implements alternative (2). 

The safing command is similar to a normal motion, except that the time interval 
∆t is not known, other than that it is to be as short as 
reasonably possible.  The time interval is calculated by 
minimizing the time interval while keeping the magni-
tude of the acceleration constrained to be less than 
plus or minus the maximum acceleration αX.  The time 
interval for the two angles will in general not be equal: 
calculate each of them, and then use the longer ∆t in 
the regular equations above.  The maximum accelera-
tion αX is determined by the maximum torque from the 
motor(s) (which may vary, depending on whether both 
of the elevation drives are operational), the restorative 
torque (for elevation), and the moment of inertia. 

As before, consider the constant acceleration approach. Plot angular position 
(representing az or el) as a function of time.  It can be seen that there are three cases: 
(1) initially the mirror is moving the wrong way (away from the safe position); (2) the mir-
ror is moving the right way, but too fast; and (3) the mirror is moving the right way, but 
not fast enough.  In addition, there are a couple borderline cases: the mirror is not mov-
ing; the mirror is in the right place, or the mirror is moving at just the right speed—they 
can be treated as limits of the above cases.  The analyses are the same regardless of 
signs: “too high and moving up” and “too low and moving down” are in the same class.  

Figure 4 shows case 1, with the mirror initially moving the wrong direction.  The 
mirror has an initial position θI and an initial velocity ωI.  It will take some time ts to stop: 
ts = -ωI/α, where the minus sign comes from the need to reduce the velocity to stop, and 
α is +αX, with αX the maximum allowable acceleration, directed downward for positive ωI 
and upward for negative ωI:  

ts = |ωI/αX|.   Eq. 4 

After stopping, the mirror will be at some extreme position θx: 

 θ θ ω α θ
ω
αx I I I

I

X
t t= + + = ±.5

2
2

2

,  Eq. 5 

using the + sign for positive ωI and the - sign for negative ωI. 
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 Once stopped, the mirror then has to be moved from θx to the safe position θS by 
accelerating for a time ta and decelerating for an equal time td:  

 t ta d
S x

X
= =

−θ θ
α

,  Eq. 6 

where the absolute value accounts for both the upper and 
lower cases.  The time needed to slow down and reverse 
directions is then ts+ta, and the total time to safe can be 
ts+ta+td.  

 There are advantages to using two equal half-
intervals in the algorithm, as with the normal operation: it 
is easier to keep track of the two axes if they both have 
the same timing, and the normal operation algorithms can 
be reused (minimizing the amount of code to be written).  
The safing can be made symmetric by allowing an equal 
time for the decelerate to safe stop phase: give each half-
interval ts+ta.  As can be seen in Fig. 5, this doesn’t just 
mean that a less extreme acceleration can be calculated 
for the second half-interval: to match slopes and positions, the acceleration for the first 
half is also moderated (less extreme).  Once a time interval is selected, the equations 
above for normal operation calculate the accelerations, velocities, and positions: the 
exercise here was to find a reasonably short time interval that wouldn’t require exces-
sive accelerations. 

 Figure 6 shows the second case: the mirror is moving in the correct direction, but 
going too fast to stop in time.  As before, calculate the time ts needed to come to a stop, 
determine the stopping position θx, and then calculate the time ta needed to accelerate 
back to the safe position.  Also, as before, once ts+ta has been calculated, use the 
same length for the second half-interval, and then use less than extreme accelerations 
to stop at the safe position. 

 Although the situation is different, the equations for case 2 are the same as for 
case 1: the time to stop is given by Eq. 4, the local extreme position at the overshoot is 
given by Eq. 5, and the time to accelerate back to 
the safe position is given by Eq. 6.  For case 2, like 
case 1, the first half-interval is the larger, and the 
second half-interval will have a more moderate ac-
celeration: in the limiting case where there is no 
overshoot, the time of the half interval is the stop-
ping time ts, and the acceleration is zero for the 
second half interval.  

 Figure 7 shows the third case (and this one 
is different): the mirror is moving the right direction, 
but it could move faster.  In this case, ts is a nega-
tive number, telling when the mirror would have 

position θ

ts

0 t

ta td

ωI

ωx

θI

θS

ts

 
Fig. 5 

 

position θ

ts

0 t

ta td

θx

ωI

θI

θS

 

Fig. 6 



SW-LOC-293 7 12/18/2012 

had to have started moving to reach the observed initial velocity ωI: 
ts = -|ωI/αX|.   Eq. 7 

The position θx is the position the mirror should have started from, given constant 
acceleration:  

 θ θ ω α θ
ω
αx I I I

I

X
t t= + + =.5

2
2

2

 . Eq. 8 

This is the same as Eq. 5 above, except that this time the + sign is used for the nega-
tive ωI case, and the - sign is for the positive ωI case. 

 The acceleration time ta and deceleration time td are calculated as before, using 
Eq. 6.  However, since ts was negative, td is the defining time: the second half-interval 
has the limiting acceleration, and the time td is used for the length of the half-intervals to 
calculate the required accelerations: the first half-interval is elongated to equal the se-
cond, and so has a less extreme acceleration. 

 The distinction between case 1/case 2 and case 3 is that for the latter, the mirror 
is able to “stop in time”: cases 1 and 2 both begin with a deceleration (stopping) phase, 
while case 3 begins with an acceleration.  If the mirror is moving in the correct direction, 
then the stopping time is ts = |ωI/αX|, as given in Eq. 4.  The position when stopped is 
given by Eq. 5: if θx is between θI  and θS, then it is case 2.  Rephrased, use case 2 
equations when  
 (θS - θI) and ωI have the same sign (e.g., ωI · (θS - θI) > 0), and Eq. 9a 

 
ω
α

θ θI

X
S I

2

2
< − . Eq. 9b 

 Other considerations for safing:  

• Since these paths will be calculated autonomously, they will not have been limit 
checked for position and maximum speed.  There are too many possible conditions 
that might cause the algorithm to exceed one or the other limits to include them ex-
plicitly in the equations, and in some cases the correction for one (e.g., speed) ag-
gravates the other (a longer time interval would allow the mir-
ror to move further past its limit),  The solution is to treat the 
limits independently: upon calculating the “recommended” 
time interval, the code will determine the maximum speed, 
and if it exceeds the limit, it will extend the time interval ac-
cordingly.  This is not a linear relationship: the maximum 
speed is easily reduced in a case 3 path by increasing the 
time interval.  However, in a case 1 where the initial position θI 
just happens to line up with the inflection point (see Fig. 4), 
the velocity ωx will equal ωI for any possible time interval.  (But 
then, that velocity should not exceed the limit, since ωI pre-
sumably was an acceptable velocity.)  The algorithm will try to 
limit maximum speed, but only to a point (by trying, say, 10-
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times the recommended time interval).  Position exceedences are handled autono-
mously by the emergency stop (see below). 

• The elevation drive has a restorative spring, which would allow larger torques when 
moving towards the neutral position.  It would further complicate the algorithm to 
take advantage of possibly increased accelerations in one direction.  Also, the effect 
is smallest in the primary region of interest, as the neutral position is at or near the 
safe position.  

Emergency stop 
 One last detail to discuss: a limit check on the angular positions.  Presumably 
this limit check will not be needed for normal operations, since the scan table entries 
will be tested prior to use, but the code will still check each point just to be sure.  Also, 
the emergency stop may be needed for the automatically calculated safing.   

 The emergency stop is sort of like an algorithmic air-bag: it will deploy just prior 
to hitting the limit, and will abruptly decelerate the motion.  It will use the maximum 
torque (including the restorative spring force, since that will be strong there and directed 
in the right direction).  It will use peak acceleration, without consideration for smooth de-
rivatives: it will be a bumpy ride. 

 First calculate the acceleration possible in an emergency: αE, which includes the 
restorative torque. Note: the torque varies with angular position—it would needlessly 
complicate the algorithm to use the full expression: approximate it with a constant that 
is set to the torque at some angle (say, at 3/4ths of the maximum excursion); don’t use 
the torque at the limit angle. 

 Use Eq. 5 again, substitute the limiting angle θL (use the appropriate upper or 
lower limit) for the extreme angle θx, the current position θ in place of initial θI, and then 
solve for the critical velocity ωC: 

 ( )ω α θ θC E L= ± −2 , Eq. 10 
where the + sign is used for the upward motion and upper limit, and the - sign is for the 
downward and lower limit.  If the instantaneous velocity at any time exceeds the limiting 
critical velocity, then the algorithm jumps to the emergency braking subroutine, slams 
on the brakes, and then reports back to other software that the mirror has been 
stopped. 

Summary 
 The equations for normal and safing-mode operations have been calculated for 
the constant-acceleration profile; with the appropriate modifications given in SW-LOC-
294, other acceleration profiles can use the same equations.  The emergency-stop al-
gorithm always uses the constant-acceleration profile. 
 
~Lawrence Ames 
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