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Subject /title: S/N performance of synchronous sampling as a method of demodulation

Compares the signal and noise performance of the proposed method of synchronous
sampling followed by a digital FIR filter with synchronous demodulation followed by signal
integration. Concludes that the ultimate performance with equivalent bandwidths is iden-
tical, and that the correct formula for the NEP at the detector in either case (assuming
only detection of the fundamental) is

1 dv?
i P A
CrRY\ df f

where Cy is the amplitude of the fundamental in the Fourier series of the chopping wave-
form, R is the responsivity, dvZ /df is the noise density around the chopper frequency and
Af is the noise bandwidth of the preamp, sampling waveform and following filter consid-
ered as a composite filter at the chopping frequency. If Af is essentially governed by the
smoothing of the following filter, then it is also equal to twice the noise bandwidth of that
filter considered as a filter at zero frequency, for obvious reasons. As usual, the NEN is
given by

NEP

AQr

where A} is the etendue and 7 is the optics transmission.

NEN =
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Aim
Calculate signal/noise ratios for signal chains consisting of

1) chopper—detector—preamplifier-synchronous demodulation-low pass filter.
2) chopper-detector-preamplifier-synchronous sampling-digital FIR filter.

Notation

P Input radiant power on detector (chopper fully open — chopper fully closed).
C Chopping waveform C(t) at frequency f., with Fourier coefficients Cy:

C(t)= Z Crpexpi2anf.t.

n=-—o0

The fundamental amplitude is given by Cy = 2|C,|. For a square wave, with symmetry
about t =0, Cg? = 1, C37 = % for n = odd, with C; positive, signs alternating,
and C_, = Cy. For a trapezoidal waveform with rise time (and fall time) equal to 7,
Ctrer = C39 sincnw fer

R Detector responsivity

G(f) Preamplifier gain as a function of frequency

H Output of preamp H(t), with Fourier transform H(f).

D Demodulation waveform D(t) with Fourier coefficients D,. The only relevant one is
unit switching in phase with the C(t), for which the coefficients are Dy = 0, D, =
2C39.

S Sampling waveform S(t) with Fourier transform S(f). -

d, F The S waveform consists of a single cycle d(t) with Fourier transform d(f), repeated
several times (possibly with varying weights), described by a sequence of delta func-
tions F(t), with Fourier transform F(f). S(t) is d(t) convolved with F(¢), so that
S() = d(F)F(5).

dv?/df Mean square noise density at detector due to background and detector noise. Assumed
to be white noise with 1/f noise excess at low frequency.
¢ FIR filter coefficients.



1. Signal/noise calculation for synchronous demodulation.

The detected signal is PRC(t), which is periodic with Fourier coefficients PRC},. These
are amplified by the preamp to give PRC,G(nf.). This signal is then multiplied in the
time domain, that is convolved in the frequency domain, with the demodulation waveform
D. We are interested in the signal around zero frequency, which is

Signal = i PRG(nf.)CnD_n. 1)

n=-—oo

There are also ripple components of the signal at f, 2f. etc.

Noise power in the input at f is convolved with D to appear in the output at f —nf,
(n = —00...00). Thus noise power in the output at f derives from input noise power at
different frequencies:

df

= dv?

out n=0

IG(nfe)*(I1Dn?) + |D-nf?). (2)

in

Note that since Dy = 0, the 1/f noise at low frequency does not appear at the output
around f = 0, but at f;, 3f. etc., which is the reason for using synchronous detection in the
first place. (This also implies that the ripple components of the signal at these frequencies
are contaminated with 1/f noise, and so only the low frequency signal ouput is useful.
Thus the demodulation must be followed by a low pass filter, such as integration for a time
T.) Thus for an output noise power around zero frequency, the input noise powers in the
summation in (2) are all around multiples of the chopper frequency, and are thus assumed
to be constant factors in the sum. Two trivial examples as a check on the formalism are
as follows.
a) Square wave choping and wideband preamp.
Under these conditions we can put G(nf;) = G and evaluate the sums:

Signal =PRG ) Cu#D_,=PRG Y —— =%
n=-—00 n=0dd

PRG 3)

which is obviously the correct answer for a rectified square wave. The noise power is given
by

2
2o S D= P 4)

df in no daf

indicating that the noise power density around zero frequency is the same as the white noise
power density at frequencies above the 1/ f noise in the input, apart from the preamp gain.
This is also obvious since the effect of multiplying by £1 in the demodulation does not
change the rms value of the noise. However it does conceal a subtlety which is illustrated
by Figure 1. (The value of f is taken to be 500 Hz in this and subsequent figures.) Input
noise power in a bandwidth Af around multiples of f. appears at different frequencies
in the output as shown, and if the input noise is all white, the output in each band has

out in
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the same value. However, by the usual definition of noise bandwidth, the output band at
zero frequency only has half the bandwidth. Ignoring the difference between 8/7% and 1
we can simplify by saying that half the noise power in a band Af around f. appears in a
band of half the width at zero frequency (and therefore with the same density), and half
in a band of width Af at 2f; (with half the noise density, the other half here coming from
input noise at 2f;). If the following filter has a noise bandwidth A fpc the NEP is found
by setting Signal in (3) equal to rms noise in (4):

2dv

NEP = 21/ 5 fpo- ()
For example, integration for a time T gives a noise bandwidth 1/2T, and
2 [dvZ 1

b) Square wave chopping followed by detection of fundamental

For these conditions we assume the preamp gain falls to zero between f. and higher
harmonics: G(f.) = G, G(nf.) = 0 for n > 1. There are then no sums to evaluate:

Signal = PRG(quD_l +C* .D1) —ZPRG (6)
dv? 2 2\ 2 v?z — 8 2 dvrzz
ra = (|D1|* + |D-1[*)G T W—2G ran (7

Again this is easy to understand: the fundamental is a sine wave with amplitude 2/ which
gets rectified by D, and the average of the rectified output gives another factor of 2/7.
The noise is also smaller, because we are now sensitive only to noise around f., but the
reduction is small because (|D;|? + |D-1|%) contains 8/7% of the total summation. The
NEP with a low pass filter with noise bandwidth A fp¢ is correspondingly increased, by a
factor m/2+/2:

NEP = \/’fR dg Afpc. (8)

¢) General results
Applying the above formalism with confidence we obtain for the NEP in general

du? Y200 |G(nf) P Dal?
NEP = 5y G Ao \/z? G(nfo)CaD ©

df

which for detection of the fundamental only reduces to

1 dv2
NEP = C B\ 7 —22Afpc (10)

of which (8) is a special case for square wave chopping (Cy = 2/7).
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2. Signal/noise calculation for synchronous sampling.

We can look at the second half of the signal chain in Section 1 in a different way, by
viewing the demodulation by D and low pass filtering as a single operation on the output
of the preamp H, which produces an output signal of which we take one sample, so that
the mean value of the output is the signal, and the total mean square noise in the output
is the signal variance. The operation is described by a sampling function S:

Output(t = 0) = / H@)S(t)dt = /_ : H(F)S(-f) df.

We can view S(t) as the convolution of one cycle of D(t), which we define to be d(t),
convolved with a sequence of delta functions of various weights F(¢), describing the low
pass filtering. (This is a rather approximate representation of the low pass filter except for
the special case of integration for an integer number of chopper cycles, when it is exact,
with F' consisting of N delta functions of equal weight.) S(f) is thus given by the product
F(f)d(f). With this way of looking at the signal chain we can find the signal by putting
H equal to the signal output of the preamp:

Signal= ) PRG(nfc)Cud(—nf.)F(-nf.) (11)

n=—o0
and the noise by putting H equal to the amplified noise:

2
dv?

dval /“ﬂ IGUPIH)PIF()IR df 12
' [ 4 . (12)

out in

Since F(t) consists of a sequence of delta funtions spaced by 1/f., F(f) consists of a
sequence of sharply peaked functions around nf.. Noting also that d(nf.) = Dy, we see
that (11) and (12) are essentially equivalent to (1) and (2), with the final averaging over
several chopper cycles described by F' included in the calculation. Sensitivity to higher
harmonics (in either signal or noise) is thus entirely controlled by the combination of
preamp gain G and d. If we assume that this product is negligibly small at multiples of f,
above the fundamental, then the only signal is at f,, and it is sensible to define the noise
bandwidth of the composite filter Gd F as

IG(f)Pld(f) P IF(fe)PAf = /o |G IF )P df
We can then evaluate the NEP by setting Signal equal to rms noise:

1 dv2
NEP = —C—f—R- —df—Af (13)

which is equivalent to (10) because the noise bandwidth of the composite filter at f. is
twice the value of the noise bandwidth of the low pass filter considered in section 1.
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This way of looking at the signal chain permits a very simple transition to a sampled
system: we simply change the function d describing one chopper cycle of sampling function
from a continuous function to delta functions at the time of the samples, and the coefficients
of the delta functions in F(t) are just the FIR filter coefficients c. Equation (13) for the
NEP still applies to the case where there is no detection of higher harmonics, as do the
above remarks concerning the rejection of those harmonics by G(f) and d(f), and noise
away from f. by F(f). With this in mind it is useful to plot the part played by d and F
in this process in different schemes, to indicate the performance required of G. Figure 2
compares d( f) for the demodulation and sampling approaches. The upper panel of Figure 2
shows |d(f)| for two different relative phasings between the integration period and the
demodulation waveform, realisable by starting and ending the integration at one of the
plus to minus transitions (solid curve) and midway between two transitions (dashed curve).
The lower panel shows the analagous plot for sampling: the solid curve shows |d(f)| for
a sampling cycle consisting of (chopper open — previous chopper closed), and the dashed
curve a cycle where the chopper closed value is the mean of the preceding and following
samples. These plots clearly indicate the problem of noise at multiples f. aliasing into the
signal band, and also show that the sampling approach is more sensitive to this than the
demodulation approach. The reason for the preference that has already been expressed
(TC-NCA-18) for the symmetrical sampling function is also apparent — it gives better
rejection of noise at low (as opposed to zero) frequency, and around 2f.. It is worth noting
that these considerations tend towards the definition of G as a bandpass filter centred on
fe, in which case the signal output of the preamp is a sine wave, and there is only one
correct choice of time at which to sample it (unless much more complicated, switching
filter designs are being considered, which would seem to compromise the simplicity of the
analoge electronics brought by the sampling approach). This also implies that timing of
the sampling, or phasing relative to the chopper is both important (the NEP formulae
given here are for optimum phase) and in principle subject to change if there is change
in chopper motion characteritics, or phase shifts in G. Thus some degree of post-launch
phase adjustment ought probably to be allowed for.

Finally Figure 3 shows the performance of two very simple FIR filters. They are both
15 tap filters, symmetric in time, with coefficients generated by simple algorithms about
which I do not make any claims at all except that they produce numbers with exact binary
representations! The upper panel shows the coefficients, and the lower panel F(f). The
solid curves are for ¢, = 1 — (n/8)?, and the dashed curves ¢}, = c2. (The F(f) curves
have been renormalised by Y ¢ to make the peaks equal to unity.) These plots illustrate
the general behaviour of F(f), periodic with period f.. Also the FIR filter contributes
nothing to rejection of 1/f noise, having a pass band centred at zero frequency. The noise
bandwidth in each period of F(f) is fc ) ¢?/(3_ ¢)?, which is 38 Hz and 45 Hz for the two
filters shown in Figure 3. The plots also illustrate the tradeoff between peak sharpness
and ringing: the solid curve has a narrower peak, and overall smaller noise bandwidth,
but markedly more ringing. The NEN requirement in the IRD I take to be for a notional
FIR filter describing integration for a time VIFOV/(Scan Rate), for which Afpc¢ in (10)
is 7.8 Hz, or Af in (13) is 15.7 Haz.
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FIGURE 2
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Christopher Palmer - Tel. (+44,95-11-14 03:44,My last word on sqrt(2)

Date: Tue, 14 Nov 1995 10:44:42 GMT

From: palmer@atm.ox.ac.uk (Christopher Palmer - Tel. (+44) (0)1865 272890)

To: dwoodard@atm.ox.ac.uk

Cc: BJOHNSON@atm.ox.ac.uk, WMANKIN@atm.ox.ac.uk, WHITNEY@atm.ox.ac.uk,
JHARTLEY@atm.ox.ac.uk

Subject: My last word on sqrt(2)

On the basis of Jeanne's helpful account of how the people measuring

it define NEP I agree that TC-OXF-52 is in error. The key equation is the
general result (9), in which the term in the sum in the denominator
should be squred, and the sum square rooted. The special case (10)

then looses the factor of 2 in the square root.

CWPP

Printed for woodard@ncar.ucar.edu (Douglas M. Woodard)




