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HIRDLS/ISAMS Vertical Resolution Study
JJB, AJLM, 23 February 1990 (version 2)

1. Aims of the study

The aim of the study is to quantitatively determine the optimum vertical instru
ment field of view (IFOV) and the sampling strategy. It complements retrieval simulation
studies, in providing an understanding of factors that limit the resolution and in being
very much less demanding of computer resources. The study was performed primarily for
HIRDLS but is of great relevance for ISAMS which has an IFOV of about 2.36 km and a
view direction step size of about half of this. In addition the results from section 3 have
a broader application to deconvolution problems, such as the improvement of HIRDLS
along-track resolution.

2. Backus and Gilbert analysis

The study was conducted using the concepts developed by Backus and Gilbert (1967,
1970) and applied to atmospheric sounding by Conrath (1972). The technique generates
linear combinations of input weighting functions that minimise various combinations of
noise for that combination and its 'spread'.

Suppose that radiances for each of m weighting functions Wi(z') are measured by the
instrument where i takes values if 1 to m. z' is the height coordinate. We linearly combine
them with coefficients ai to give a combination weighting function A(z,z') used to sound
some desired height z such that:

m

'Spread' 5 is roughly equivalent to width or resolution, and is defined as
/•OO

S(z) = 12 / (z-z')2A2(z,z')dz'.
Jo

This definition has the advantage that the problem can be solved analytically. The factor
of 12 causes the spread of a boxcar function centred on the desired level to have a spread
equal to its width. The variance Ea corresponding to A is given by
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Ea =22 ai X/ ^«Jai

where Ejj is the error covariance between measurements i and j. For this application off-
diagonal elements of matrix E are taken to be zero, and the diagonal elements are taken
all to be equal to the instrument noise variance.

For a given height z various sets of coefficients at- are obtained algebraically be min
imising the sum of qS(z) + {q —l)rE{z) where q is chosen by the user and has a value
between 0 and 1, and r is a dimensioned constant also chosen by the user to the scale the
problemin a convenient way. Setting q to 0 will lead to a combination which minimises the
error of the combination function irrespective of its spread (in this case the combination
will be an average of all of the input functions with at- = m-1). Setting q to 1 will lead
to the combination with lowest spread irrespective of noise. Intermediate values of q lead
to compromise solutions which are normally preferable. Results are given in the form of
a tradeoff curve (delineated usinmg a large set of different values of q) showing how noise
varies with spread. In principle the user can use the curve to help select which tradeoff



to use, but in this case tradeoff curves will be generated for different values of IFOV and
then intercompared.

3. Measurement of Limb Radiance profiles

A set of idealised field of view functions was first studied, as shown in figures la-d.
These are Gaussians of full width at half height of 2 km. Set (a) has 9 functions at 2 km
intervals between centres. Sets (b), (c) and (d) use 17, 25 and 33 functions to span the
same height range, hence are spaced at intervals of 1, 0.667 and 0.5 km respectively. Figure
2 gives three examples of combinations centred halfway up the family of 25 functions. One
example is the narrowest obtainable, another is that of lowest noise (it is the average of
all of the input functions), and the third is some compromise.

Figures 3a and 3b give the tradeoff curves for (a) a level centred on the centre function,
and (b) half way between the centre function and the next above. The various points are
for different trade-offs between width and noise for each of the 4 sets of input functions.
(The origin of the points cannot be distinguished since the colour on the original has been
lost in reproduction). The points all fall on the same curve with the exception of those
for 9 functions which deviate markedly below the curve for case (a) and above for case
(b). This is intuitively to be expected since we might expect the best resolution to be
obtained for the case of adjacent, non-overlapping functions, when a function is centred on
a desired level, and the worst when the required level is midway between function centres.
In this case the resolution varies with height but has an average value that approximately
follows the tradeoff curve for closer function spacing. Although a non-oversampled set
of weighting functions appears to give better value if measurements are only required at
weighting function centres, oversampling does lead to a lower limiting spread (it cannot
lead to a worse spread because the set contains all of the weighting functions present in
the non-oversampled case but with higher noises).

It can be seen that the limiting minimum spread is approximately 0.9 km, and that a
spread of 1 km (i.e. half of the full width at half height of the Gaussian weighting functions)
is obtained with a noise amplification of approximately 10 x compared with that for 2 km
spread.

When making these composite tradeoff curves, the noise for each measurement has
been assumed to be proportional to m1//2 where m is the number of functions; this is
consistent with the instrument using a fixed amount of time to obtain a complete set. The
vertical scale (noise) should be considered to be arbitrary in this case.

Tradeoff curves for narrower or wider input functions can be generated by shifting the
curves (plotted on log-log axes). Consider using detectors 1km wide. If the scan range is
halved we have precisely the same problem with all of the distance scales halved. However
the noise in radiance units for a given integration time will be 21/2 higher because the
detectors are smaller. In addition with the scan range halved the instrument can only
spend half of its time scanning this part of the atmosphere. The net result is that the
tradeoff curve is shifted upwards and to the left by and amount corresponding to a factor
of 2 in each direction.

4. Measurement of profiles of geophysical quantities

The above case corresponds to measurements and analysis of profiles of radiance as
observed from space. We can measure them to any desired resolution by providing sufficient
optical resolution. In order to retrieve temperature or concentration or mixing ratio of a
species as a function of radial distance from the earth's centre we must take into account



vertical averaging caused by the viewing geometry which imposes a practical limit on the
ultimate vertical resolution.

4.a. Weighting functions

Figure 4a-c give functions that have been used to determine the tradeoff between res
olution and noise for IFOVs of 1, 1.5 and 2 km respectively; the functions used for 1.25 km
IFOV are not shown. In each case a detector of this projected height in the atmosphere is
assumed together with a 16 cmentrance aperture with diffraction appropriate to 15 micron
wavelength radiation, and additional aberration with a spot diameter at the focal plane
of 30 microns assuming fl.5 optics. This gives rise to the rounded-off boxcar function in
each figure (the curves labelled optical). That curve has been further convolved with the
sharply peaked atmospheric smoothing function which gives the number of molecules per
unit height along a tangent path for a gas whose concentration has a scale height of 7 km.
This curve is appropriate for sounding a gas of uniform mixing ratio when the passband
includes the whole of spectral fines (centres plus wings) and when the centres are optically
thin. (For optically thick centres and scale height of 14km would be more appropriate
implying broader atmospheric smoothing functions.)

The convolved functions have been replicated as shown in figures 5a-c, 6a-b, 7a-c and
(Sa-c for IFOVs of 1, 1.25. 1.5 and 2 km respectively. In each case curves a, b and c have
peaks spaced at the IFOV, 0.5xIFOV and 0.25xIFOV respectively giving no oversampling
(abutting fields ofview except for any diffraction and aberration effects) for cases (a), and
various degrees ofoversampling for (b) and (c). The areas under the curves are unity for
the centre function which has the centre of the IFOV located at 10 km. Other functions
have an area of exp(-(z - 10)/7) where z is the height (km) of the centre of the IFOV.

Three methods were considered in order to obtain equivalent IFOV scan range for
measurements with different resolutions so that valid comparison would be possible:
a) equal scan range of the IFOV centres;
b) equal distance from the bottom of the lowest detector edge to the top of the highest

detector edge;
c) a more sophisticated version of (b) to allow for the effect of atmospheric and optical

broadening, e.g. equal distance from Ai below the bottom IFOV centre to A2 above
the top IFOV centre where Ai and A2 are the distances from the centre of the lower
and upper half power points of the convolved functions as given in figure 4.

Method (a) was used, with a scan range of16 km (IFOV centres at 2-18 km) except for
the 1.5 km IFOV where 15 km was used because the computational grid did not permit a
range of 16 km. Ideally the noise for the 1.5 km cases should be increased by « (16/15)1/2
to allow for the reduced scan range, but this was not done. Differences between methods
a. b and c above are of similar magnitude and are probably sufficiently small as to be
ignored.

Having arranged for the different cases to have equivalent scan ranges, the noise of
each measurement was set to (m/tu)1/2, where m is the number of functions and w is the
IFOV width measured in km.

4.b. Intercomparison of test cases for 10 km

Figure 9a gives the full tradeoff curves for each case on log-log scales and figure 9b
gives a subset of the domain on linear scales. In figure 9a it can be verified that for
large spreads the wider IFOV gives rise to lower noise. The oversampled curves for 2 km
IFOV cross the remainder at about 2 km resolution, although the non-oversampled 2 km
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IFOV cases continues to much smaller spreads for reasons discussed in the next section.
The curves for 1, 1.25 and 1.5 km IFOV cross each other at a spread of about 1.3 km,
with the 1 km IFOV providing some advantage over that for 1.25 km, but only for noise
amplification more than twice that obtained for 2 km resolution for the 1.25 and 1.5 km
IFOV curves.

For each IFOV width the required combination has been specified for the peak of the
function which has an IFOV centred on 10 km. Such a choice is intuitively assumed to
give the best vertical resolution. These heights are 10.375 km, 10.5 km, 10.625 km and
10.8125 km for 1, 1.25. 1.5 and 2 km IFOVS respectively. This has the effect of favouring
the I km cases with a noise lower by a factor of exp(0.4375/7) = 1.06 compared with the
2 km cases since the combined functions are obtained for a level of greater emission. It
would be valid to multiply by this factor to correct the curves for this effect for low spreads
(but consideration of the limiting minimum noise case shows that such correction is not
universally valid); however this has not been done. Again the factors involved are probably
too small to matter.

4.c. Variation of resolution and noise for the 2 km non-oversampled case

Figures 10a and 10b give log-log and linear-linear tradeoff curves for 2 km IFOVs
provided at 2 km centres. The results of section 3 lead us to expect that the resolution
will vary cyclically with height, being best near the weighting function peaks, and worst
between those peaks. Because of the difficulty referred to in section 4b of correcting
noise values of tradeoff curves to a common height, no correction was attempted, and
instead tradeoff curves were computed for points over 3 cycles of expected variation, i.e.
over 6 km, so that the vertical progression could be inspected. The heights selected were
8.8125, 10.8125 and 12.8125 km which corresponded to the weighting function peaks, and
levels relative to them of ±0.5 km and ±1 km. Figure 10a shows that the noise levels
increase with increasing value of required height, and that those for 8.3125, 10.3125 and
12.3125 km give consistently the best limiting resolution (about 1.9 km) and those 1 km
out of phase give the worst resolution. Resolution for 8.8125, 10.8125 and 12.8125 km was
close to the best. No doubt more extreme values of spread occur at other points in the
cycle, although there is little value to finding them.
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Figures

Figure 1. Input weighting functions used for the study described in section 3. The func
tions are Gaussians of 2 km full width at half height, spaced at intervals of:
(a) 2 km, (b) 1 km, (c) 0.667 km. (d) 0.5 km.

Figure 2. Averaging kernels obtained from the weighting functions given in figure lc
(0.667 km spacing) for minimum noise, minimum spread and an intermediate
tradeoff.

Figure 3. Tradeoff curves for the weighting functions given in figure 1:
a) for the centre of the centre weighting function of each set (13.3 km height);
b) half way between the centre peak and the peak above.

Figure 4. Weighting functions used as the basis for the study described in section 4. In
each figure is given the optical response function (as described in the text),
an atmospheric smoothing function corresponding to a vertical scale height of
absorption per unit volume of 7 km (this function has infinite value at the
tangent height), and the convolution of these two functions. The figures are for
IFOVs of:

(a) 1 km, (b) 1.5 km, (c) 2 km.

Figure 5. Input weighting functions for 1 km IFOV:
(a) 1 km function spacing;
(b) 0.5 km function spacing;
(c) 0.25 km function spacing.

Figure 6. Input weighting functions for 1.25 km IFOV:
(a) 1.25 km function spacing;
(b) 0.75 km function spacing.

Figure 7. Input weighting functions for 1.5 km IFOV:
(a) 1.5 km function spacing;
(b) 0.75 km function spacing;
(c) 0.375 km function spacing.

Figure 8. Input weighting functions for 2 km IFOV:
(a) 2 km function spacing;
(b) 1 km function spacing;
(c) 0.5 km function spacing.

Figure 9. Tradeoff curves based on the weighting functions given in figures 5-8 for heights
of the peak of the central weighting function (i.e. that with a tangent height of
10 km). Note that the originals were in colour, hence the curves cannot easily
be distinguished, (a) and (b) give the same data but (a) is on log-log scales and
(b) is a subset on linear scales.

Figure 10. Tradeoff curves based on the weighting functions given in figure 8a for a 2 km
IFOV at 2 km centres. Combinations are obtained for heights from 7.8125 km to
13.8125 km in steps of 0.5 km (i.e. over 3 IFOV widths). Note that the originals
were in colour, hence the curves cannot easily be distinguished, (a) and (b) give
the same data but (a) is on log-log scales and (b) is a subset on linear scales.
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