
S4PM 5.7.0 Installation and
Configuration Guide

A guide to installing and configuring NASA’s open source

Simple, Scalable, Script-Based, Science Processor for
Measurements (S4PM)

July 2005

Document Version 1.0.0

Stephen W. Berrick, NASA

S4PM 5.7.0 Installation and Configuration Guide: Table of Contents

Table of Contents

TABLE OF CONTENTS 2

1. INTRODUCTION 6

1.1 GOALS OF S4PM 6
1.2 FUTURE DIRECTIONS 6

2. RELATED DOCUMENTATION 8

3. INSTALLING S4PM 9

4. STRINGMAKER OVERVIEW 11

4.1 WHY STRINGMAKER? 11
4.2 PREPARATION FOR STRINGMAKER 12
4.3 STRINGMAKER CONFIGURATION FILES 12
4.3.1 THE STRINGMAKER GLOBAL CONFIGURATION FILE 13
4.3.2 THE STRINGMAKER HOST CONFIGURATION FILE 13
4.3.3 THE STRINGMAKER DATA TYPES CONFIGURATION FILE 13
4.3.4 THE STRINGMAKER STATIC CONFIGURATION FILE 13
4.3.5 THE STRINGMAKER STRING CONFIGURATION FILE 13
4.3.6 THE STRINGMAKER ALGORITHM CONFIGURATION FILES 14
4.3.7 THE STRINGMAKER JOBS CONFIGURATION FILE 14
4.3.8. THE STRINGMAKER DERIVED CONFIGURATION FILE 14
4.3.9 CONFIGURATION FILE SUMMARY 15
4.3.10 RUNNING STRINGMAKER 15
4.3.10.1 Before Running Stringmaker 15
4.3.10.2 THE STRINGMAKER COMMAND 16
4.3.11 USING THE S4PM MONITOR TO INSTALL AN ALGORITHM 16

5. THE STRINGMAKER GLOBAL CONFIGURATION FILE 18

5.1 FILE NAME 18
5.2 $USER 18
5.3 $GLOBAL_ROOT 18
5.4 $STRINGMAKER_ROOT 19
5.5 %RUN_ENV_VARIABLES 19
5.6 $DATASERVER_UR 20

7/7/2005 2

S4PM 5.7.0 Installation and Configuration Guide: Table of Contents

5.7. @PRIVILEGED_USERS 20
5.8 OTHER PARAMETERS 21

6. THE STRINGMAKER HOST CONFIGURATION FILE 22

6.1 FILE NAME 22
6.2 $DOMAIN 22
6.3 $BINDIR 22
6.4 $CFGDIR 23
6.5 $S4PM_ROOT 23
6.6 $INGEST_ROOT 23
6.7 $DATA_ROOT 24
6.8 $ECS_ROOT 24

7. THE STRINGMAKER DATA TYPES CONFIGURATION FILE 25

7.1 FILE NAME 25
7.2 %ALL_DATATYPE_MAX_SIZES 25
7.3 %ALL_DATATYPE_VERSIONS 26
7.4 %RAGGED_FILE_TRAP 26
7.5 %REGISTER_DATA_OFFSETS 27
7.6 @ALL_QC_DATATYPES 27
7.7 %QC_OUTPUT 28
7.8 %NON_HDF_DATATYPES 29
7.9 %SKIP_CHECKSUM_DATATYPES 29
7.8 %DATA_FILE_QA 30
7.9 $S4PM_FILENAME_PATTERN 30
7.9.1 FILE NAME PATTERN RESTRICTIONS 31

8. THE STRINGMAKER STATIC CONFIGURATION FILE 33

8.1 FILE NAME 33
8.2 %STATIONS 33
8.2.1 $CFG_STATION_NAME 34
8.2.2 $CFG_DISABLE 34
8.2.3 EXEC_SYMLINKS 34
8.2.4 MISC_SYMLINKS 34
8.2.5 $CFG_MAX_CHILDREN 35
8.2.6 %CFG_COMMANDS 35
8.2.7 %CFG_DOWNSTREAM 35
8.2.8 %CFG_INTERFACES 36
8.2.9 %CFG_FAILURE_HANDLERS 36
8.2.10 %CFG_MANUAL_OVERRIDES 36

7/7/2005 3

S4PM 5.7.0 Installation and Configuration Guide: Table of Contents

9. THE STRINGMAKER STRING CONFIGURATION FILE 37

9.1 FILE NAME 37
9.2 $STRING_ID 37
9.3 $DATA_SOURCE 37
9.4 $DATA_SOURCE_LONGNAME 37
9.5 $INSTANCE 38
9.6 $HOST 38
9.7 $ALGORITHM_ROOT 38
9.8 @RUN_SORTED_ALGORITHMS 39
9.9 @DISPLAY_SORTED_ALGORITHMS 39
9.10 %ALGORITHM_VERSIONS 40
9.11 %ALGORITHM_PROFILES 40
9.12 %POOL_CAPACITY 41
9.13
$CONFIG_FILES{'REPEAT_DAILY/S4PM_DELETE_EXPIRED_DATA.CFG'}{'%AGELIMITS'
} 41
9.14 $DATA_EXPIRATION_MAX_HOURS 42
9.15 $STATIONS{$STATION_NAME}{'$CFG_MAX_JOBTIME'} 42
9.16 %PROXY_ESDTS 43
9.17 S4PM VARIANCE PARAMETERS 43
9.17.1 VARIANCE TOGGLE SWITCHES 43
9.17.2 OTHER VARIANCE PARAMETERS 45
9.18 %ORDERING_TOOL_PARMS 46
9.19 PARAMETER OVERRIDES 47

10. THE STRINGMAKER ALGORITHM CONFIGURATION FILE 48

10.1 FILE NAME 48
10.1.1 MANDATORY PARAMETERS 48
10.1.1.1 $algorithm_name 49
10.1.1.2 $algorithm_version 49
10.1.1.3 $algorithm_exec 49
10.1.1.4 $processing_period 49
10.1.1.5 $product_coverage 50
10.1.1.6 $metadata_from_metfile 51
10.1.1.7 $trigger_coverage 51
10.1.1.8 $pcf_path 52
10.1.1.9 @stats_datatypes 52
10.1.1.10 $stats_index_datatype 52
10.1.1.11 %inputs, %outputs 52
10.1.1.12 %input_uses, %output_uses 57
10.1.2 OPTIONAL PARAMETERS 57
10.1.2.1 $post_processing_offset, $pre_processing_offset 57
10.1.2.2 $processing_start 58
10.1.2.3 $make_ph 58

7/7/2005 4

S4PM 5.7.0 Installation and Configuration Guide: Table of Contents

10.1.2.4 $apply_leapsec_correction 59
10.1.2.5 $leapsec_datatypes 59
10.1.2.6 $algorithm_station 60
10.1.2.7 %specialized_criteria 60
10.1.2.8 %file_accumulation_parms 61
10.1.2.9 $preselect_data_args 62
10.1.2.10 $trigger_block_args 63
10.1.2.11 Spatial Identifiers 63

11. THE STRINGMAKER JOBS CONFIGURATION FILE 67

11.1 FILE NAME 67

12. THE STRINGMAKER DERIVED CONFIGURATION FILE 69

12.1 FILE NAME 69

13. WORKING WITH ALGORITHMS 70

13.1 WHAT ALGORITHMS CAN S4PM SUPPORT? 70
13.2 ALGORITHM PRODUCTION RULES 70
13.3 PRODUCTION RULE CONCEPTS 71
13.3.1 SIMPLE PRODUCTION SCENARIOS 71
13.3.2 THE STRINGMAKER ALGORITHM CONFIGURATION FILE 72
13.3.2.1 The Algorithm Configuration File Name 72
13.3.2.2 Algorithm Configuration File Content 72
13.3.3 ALGORITHM CONFIGURATION FILE AUTOPSY 73
13.3.3.1 General Points 73
13.3.3.2 Line By Line Dissection 73
Discussion 73
13.4 PROCESS CONTROL FILES 76
13.4.1 THE PROCESS CONTROL FILE 76
13.4.2 THE PROCESS CONTROL FILE TEMPLATE 77
13.5 PREPARING AN ALGORITHM PACKAGE FOR S4PM 78
13.6 INSTALLING ALGORITHM PACKAGES 79
13.6.1 INSTALLATION 80
13.6.2 CONFIGURING S4PM FOR AN ALGORITHM 80

APPENDIX A. SAMPLE STRINGMAKER ALGORITHM CONFIGURATION
FILE 81

APPENDIX B. SAMPLE PROCESS CONTROL FILE 84

7/7/2005 5

S4PM 5.7.0 Installation and Configuration Guide: 1. Introduction

1. Introduction

This document describes the installation and configuration process for S4PM, version
5.7.0.

The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) is a
NASA developed system for highly automated processing of science data. S4PM is the
main processing engine at the Goddard Earth Sciences Data and Information Services
Center (GES DISC). In addition to being scalable up to large processing systems such as
the GES DISC, it is also scalable down to small, special-purpose processing strings.

S4PM consists of two main parts: the kernel is the Simple, Scalable, Script-based Science
Processor (S4P), an engine, toolkit and graphical monitor for automating script-based,
data-driven processing. The S4PM system is built on top of S4P and implements a fully
functioning processing system that supports a variety of science processing algorithms
and scenarios.

S4PM requires Perl (ideally 5.6 or higher) and has been run successfully on Irix, Linux
(RedHat), Solaris, Macintosh OS X, and Microsoft Windows.

S4PM was released to the open source community under the NASA Open Source
Agreement in April 2005 with version 5.6.2. The software is available from SourceForge
at this URL: http://sourceforge.net/projects/s4pm/.

1.1 Goals of S4PM

The main goal of S4PM is to automate science processing to the extent that a single
operator can monitor all of the processing in an "industrial-size" data processing center.
A second goal is to be flexible enough to easily add new processing strings or new
algorithms to an existing string with a minimum of effort.

High usability is another key goal of S4PM, deriving from the need for more automation
at less operational cost. Specific goals are:

• Allow a single operator to manage and monitor hundreds of jobs simultaneously.
• Drill down to troubleshoot a problem in two mouse clicks.
• Set up a new processing string in less than 30 minutes.

1.2 Future Directions

The architecture of S4PM and S4P was specifically designed to be highly modular so that
it could evolve quickly and flexibly. It has already evolved from data-driven processing
of MODIS instrument data to AIRS processing to on-demand subsetting based on user

7/7/2005 6

S4PM 5.7.0 Installation and Configuration Guide: 1. Introduction

requests. Version 5.7.0 is the first release incorporating data mining into S4PM, allowing
users to upload algorithms via a Web interface for execution at the GES DISC.

For the future, S4PM will evolve to:

• Support an ever-increasing variety of processing algorithms, scenarios and data

interfaces.
• Increase the automation of failure monitoring and recovery.
• Reduce the time and expertise needed to setup and adapt S4PM to new processing

algorithms.

We hope that some or all of these goals will be reached by collaborating with the open
source community.

7/7/2005 7

S4PM 5.7.0 Installation and Configuration Guide: 2. Related Documentation

2. Related Documentation

The S4PM home page is at: http://disc.gsfc.nasa.gov/techlab/s4pm/ where the following
documents are available:

• This S4PM Installation and Configuration Guide
• The S4PM User’s Guide
• The S4PM Design Document

7/7/2005 8

S4PM 5.7.0 Installation and Configuration Guide: 3. Installing S4PM

3. Installing S4PM

This section describes how to download and install S4PM.

S4PM is available on SourceForge at http://sourceforge.net/projects/s4pm/

There are three files to download:

1. S4PM-5.7.0.tar.gz
2. S4P-5.7.0.tar.gz
3. S4PM_CFG-5.7.0.tar.gz

Download these three files into some directory on the machine where you will install
S4PM. The 5.7.0 refers to the most current stable S4PM version. The directory you
download these files into is only used for installing S4PM and can be removed later.

Unzip and untar each of the three files. On Linux, you can untar and unzip with one
command:

tar xvzf S4PM-5.7.0.tar.gz
tar xvzf S4P-5.7.0.tar.gz
tar xvzf S4PM_CFG-5.7.0.tar.gz

On other UNIX machines, you may have to unzip and untar separately:

gunzip S4PM-5.7.0.tar.gz && tar xvf S4PM-5.7.0.tar
gunzip S4P-5.7.0.tar.gz && tar xvf S4P-5.7.0.tar
gunzip S4PM_CFG-5.7.0.tar.gz && tar xvf S4PM_CFG-
5.7.0.tar

Unpacking these tar files will result in three subdirectories: S4P-5.7.0, S4PM-5.7.0, and
S4PM_CFG-5.7.0.

Change directories into the S4P-5.7.0 directory first:

cd S4P-5.7.0

For installation of the binaries into the standard system directories on your machine, run
the following:

perl Makefile.PL
make
make test (optional)
make install
make clean (optional)

If you want to install into a non standard directory, instead use:

7/7/2005 9

S4PM 5.7.0 Installation and Configuration Guide: 3. Installing S4PM

perl Makefile.PL PREFIX=<alternate_directory>
make
make test
make install
make clean (optional)

Change directories into the S4PM_CFG-5.7.0 next and then run the same steps as above.

Finally, change directories into the S4PM-5.7.0 next and then run the same steps as
above.

→ NOTE: Be aware that if you installed into a non standard
directory (using PREFIX above), the S4PM user will have to set the
PERLLIB environment variable to the alternate location of the S4PM
libraries and the PATH environment variable the location where the
binaries get installed (in a shell start-up script, for example).

For example, to install the S4PM binaries and libraries under /home/jdoe rather than in
the standard system directories, you will need to follow these steps:

1. Log in as the S4PM user that will run S4PM.

2. Set the PERLLIB environment variable to the location where the libraries are to

be installed. For example (in Bourne, Korn, Bash shell or their variants):

export
PERLLIB=/home/jdoe/lib/perl5/site_perl/5.8.3:
/home/jdoe/lib/perl5/site_perl/5.8.3/i386-
linux-thread-multi

3. Run the install:

perl Makefile.PL PREFIX=/home/joe
make
make test
make install
make clean (optional)

4. Set the PATH environment variable to include /home/joe/bin.

7/7/2005 10

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

4. Stringmaker Overview

This section describes Stringmaker and how it is used to configure and set up S4PM
strings. It is assumed that S4PM has been installed properly as described in Section 3.

Since Stringmaker, as the name implies, is a tool to build and set up S4PM strings, it is
prudent to first define what is meant by a string. An S4PM string is a single instance of
S4PM, its complement of stations, and the algorithms configured to run in that string.
More than one S4PM string can be set up on a single machine. Why have more than one
string? A classic reason to separate strings is if you want one string to be for real-time
processing driven by event notification (data via subscription) and the other to be for
reprocessing or for filling in holes and gaps with data being ordered. In such a case, the
algorithms may be the same although the production rules may differ.

Another reason may be that you have algorithms that do not interact with each other (e.g.
supporting two different missions) or the algorithms logically fall into distinct groups
(e.g. again, supporting different missions). In this case, it may be appealing to separate
them into multiple S4PM strings.

On the other hand, in cases where the same data are used by multiple sets of algorithms,
it may pay to have them run within the same string to minimize costly data transfers.

4.1 Why Stringmaker?

Before using Stringmaker, you will need to answer several questions regarding S4PM at
your site:

1. Will S4PM be interfacing with ECS at your site? S4PM doesn't require ECS.

2. Will there ultimately be more than one S4PM string configured either on the same

machine or on several machines?

3. What type of S4PM string do you want? There are several flavors:

a. Near real-time processing driven by (nominally) ECS subscriptions.
b. Reprocessing in which data for a period of time are manually ordered.
c. On-demand processing in which events (e.g. someone making a request

through a client) drive production.

S4PM strings are nothing more than a number of directories representing stations with
each directory containing one or more scripts and configuration files. It is possible to
create a string by hand. This is, however, a laborious task since it involves many manual
steps, a mistake in any of which could render the S4PM string useless.

7/7/2005 11

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

Stringmaker (and its predecessor, Stringmaster) was created to alleviate this burden by
automating the process of creating and modifying strings. Stringmaker can handle any
flavor of S4PM.

4.2 Preparation For Stringmaker

You will have to make several decisions before configuring and running Stringmaker:

• Who will be the user running S4PM? This same user needs to be the one running
Stringmaker. In order for Stringmaker to be responsible for multiple strings, the
same user needs to be used for all strings.

• If you will be running S4PM on multiple machines, you will need to have some
directory location that is visible across all these machines. Typically, it is the
home directory of the S4PM user.

• The location of the algorithms to be run in S4PM will have to be visible to the
S4PM user and be granted the correct permissions to be executed by the S4PM
user. Any static files used by the algorithms will need to be readable by the S4PM
user. Algorithm locations can be different for each S4PM string.

• For S4PM strings that need to interface with ECS:
o If you wish to configure a string to get data from the ECS via requests for

those data, S4PM uses the ECS Science Data Server Command-Line
Interface (SCLI). Distribution Notifications (DNs) are sent via e-mail to
the S4PM user once the data have been pushed. In order for these DNs to
be processed, the S4PM user needs to direct e-mailed DNs to the Receive
DN station of the string for whom the data were ordered. This is best
accomplished with a procmail filter.

o For subscription based processing with data from the ECS, the S4PM user
will need to subscribe to ECS notifications of insert of needed data types.
These notifications are e-mailed to the S4PM user and, as above, procmail
is the most efficient way to direct those e-mails to the Subscription Notify
station. Note that this station sits across all S4PM strings.

4.3 Stringmaker Configuration Files

Stringmaker is a Perl script that builds S4PM strings based on configuration parameters
set in several hierarchical configuration files. Most of the work in getting Stringmaker to
build the strings you want are in setting up these configuration files. Once set up
properly, S4PM strings can be created or modified easily.

The Stringmaker configuration files are described below. Stringmaker reads these
configuration files in the order shown. The configuration files are organized so that the
most global parameters are specified at the top of the configuration file chain and
whereas the more specific ones are specified at the bottom.

7/7/2005 12

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

4.3.1 The Stringmaker Global Configuration File

The global configuration file is named s4pm_stringmaker_global.cfg and contains
parameters that are common across all S4PM strings. Anything in this file, however, can
be overridden in any of the following configuration files.

Section 5 has a detailed discussion on the Stringmaker global configuration file.

4.3.2 The Stringmaker Host Configuration File

The host configuration file contains parameters that are common to a particular host
machine, but that may differ from one machine to another. The actual file name for this
configuration file is the host machine name with the .cfg file name extension. The host
machine name is the same as what the 'uname -n' UNIX command would return. For
example, g0spg11.cfg. There needs to be one such configuration file for each machine on
which S4PM is to be installed.

Anything in this file can be overridden in any of the following configuration files.

Section 6 has a detailed discussion on the Stringmaker host configuration file.

4.3.3 The Stringmaker Data Types Configuration File

The data types configuration file is named s4pm_stringmaker_datatypes.cfg and contains
data type parameters for all S4PM strings. It is intended to be a pool from which
individual strings draw information about data types.

As above, anything in this file can be overridden in any of the following configuration
files.

Section 7 has a detailed discussion on the Stringmaker data types configuration file.

4.3.4 The Stringmaker Static Configuration File

The static configuration file is named s4pm_stringmaker_static.cfg and, unlike the ones
above, is not meant to be modified. It is intended to be static as its name implies. It is in
this file where a number of the S4PM stations are described and their configuration files
set.

Section 8 has a detailed discussion on the Stringmaker static configuration file.

4.3.5 The Stringmaker String Configuration File

This configuration file is unique for each individual S4PM string and is meant to specify
parameters unique to a string. Unlike with the above configuration files, the file name is

7/7/2005 13

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

completely arbitrary although a consistent naming convention is recommended if
your site has multiple strings.

Among other things, this configuration file sets what algorithms are to be run. It is
assumed that algorithms listed here have their own algorithm configuration files (see
Section 4.3.6).

Section 9 has a detailed discussion on the Stringmaker string configuration file.

4.3.6 The Stringmaker Algorithm Configuration Files

The algorithm configuration files specify information about the algorithms. There needs
to be one such file for each algorithm. The name of file must be the algorithm name
followed by an underscore followed by the profile and then the .cfg file name extension.

For example:

MoPGE01_RPROC.cfg

As one would guess, these algorithm configuration files contain parameters having to do
with a particular algorithm to be run in S4PM. This includes specifying the data types to
be input and output by the algorithm. These data types must exist in the
s4pm_stringmaker_datatypes.cfg file. Unlike with all the other Stringmaker configuration
files, the algorithm configuration files are part of the algorithm package and reside where
the rest of the algorithm package resides.

Section 10 has a detailed discussion on the Stringmaker algorithm configuration files.

4.3.7 The Stringmaker Jobs Configuration File

The jobs configuration file is named s4pm_stringmaker_jobs.cfg and it contains only one
parameter. That is, the maximum number of jobs that can be run in a S4PM station in a
particular string. Unless set in this file, the maximum number of jobs that can be run in
any station is five. For stations where the number needs to be different (higher or lower),
this file is used. Note that unlike the other Stringmaker configuration files, this one is
optional.

Section 11 has a detailed discussion on the Stringmaker jobs configuration file.

4.3.8. The Stringmaker Derived Configuration File

The derived configuration file is named s4pm_stringmaker_derived.cfg and this
configuration file is at the bottom of the hierarchy. Based on all of the above
configuration files, this file makes decisions on which stations are to be configured in a
particular string and how they are supposed to interact with one another. Like the
s4pm_stringmaker_static.cfg file, this file is not meant to be modified.

7/7/2005 14

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

Section 12 has a detailed discussion on the Stringmaker derived configuration file.

4.3.9 Configuration File Summary

The minimum set of configuration files needed for the simplest S4PM string running a
single algorithm is seven:

1. s4pm_stringmaker_global.cfg
2. <host>.cfg
3. s4pm_stringmaker_datatypes.cfg
4. one <algorithm>_<profile>.cfg file
5. s4pm_stringmaker_static.cfg
6. <string>.cfg
7. s4pm_stringmaker_derived.cfg

Of these, you only need to create/modify five of them:

1. s4pm_stringmaker_global.cfg
2. <host>.cfg
3. s4pm_stringmaker_datatypes.cfg
4. one <algorithm>_<profile>.cfg
5. <string>.cfg

The Section 5 through 12 will delve into each of the configuration files in detail.

4.3.10 Running Stringmaker

This section describes how to actually run Stringmaker.

4.3.10.1 Before Running Stringmaker

Before running Stringmaker on an existing string, you need to consider whether or not
the string needs quiesced. By quiesced, we mean a state in which all stations in the string
are turned off (show up as red in the S4PM Monitor) and there are no jobs running in any
of the stations (all jobs are either blue for queued up or red for failed).

To play it safe, always quiesce your string before you run Stringmaker. For small
configuration changes, you may get away with not having to do so. This is, however, not
recommended.

For particularly large or deep changes, you may even want to run the string “dry” prior to
running Stringmaker. That is, allow the string to finish up processing and exporting data
from any current and queued jobs, but not allow more data to come into the string.

7/7/2005 15

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

4.3.10.2 The Stringmaker Command

The commands to run Stringmaker is:

s4pm_stringmaker.pl –c|-u|-a –s <string>.cfg

where <string>.cfg is the name of the Stringmaker string configuration file.

With the –c option, a new S4PM string is created. If one already exists, it will be
overwritten.

With the –u option instead, all station and script configuration files are created
overwriting any that may already exist. With this option, as opposed to the –c, no new
links or directories will be created. Thus, you don’t want to use the –u option if adding a
new or updated algorithm to S4PM (since this involves the creation of some new
directories and links).

The –a option is for a very special case. It is only used when changes have been made to
the Stringmaker jobs configuration file such as increasing the maximum number of jobs
in Run Algorithm in some string. In this case, Stringmaker will only alter the station
configuration files of the stations affected by the change and nothing else.

If in doubt, the –c option is always safe and there is almost no performance penalty for
running it over the other options.

For example:

s4pm_stringmaker.pl –c –s S4PM10_MO_RE.cfg

will create (or re-create) a string whose string configuration file is named:
S4PM10_MO_RE.cfg.

4.3.11 Using The S4PM Monitor To Install An Algorithm

Stringmaker can be run on the command line as discussed in Section 4.3.10.2 to add (or
remove) an algorithm from S4PM. It would simply involve editing the string
configuration file to first remove the algorithm from the list in the
@run_sorted_algorithms parameter array and then running Stringmaker with the –c
option. If only the version of the algorithm changed, then the string configuration file
would be edited to change the algorithms version in the %algorithm_versions hash
parameter in the same file before running Stringmaker.

But there is an easier way:

7/7/2005 16

S4PM 5.7.0 Installation and Configuration Guide: 4. Stringmaker Overview

From the S4PM Monitor, right-click on the Configurator station button and select Install
Algorithm or Uninstall Algorithm. For installation, you will be asked to first select the
string you wish to alter and then select the algorithm configuration file corresponding to
the algorithm you wish to install. Remember, it is assumed that you already placed the
algorithm package unpacked into the correct location.

Uninstalling works much the same way. You will be shown a list of algorithms currently
configured for this string. Select the one you wish to delete. Note that the algorithm
package will not be deleted from disk; only S4PM will be configured not to run it.

Underneath the covers, it is Stringmaker that gets run with installing or uninstalling an
algorithm in this manner. The advantage is that the string does not need to be quiesced or
run dry. The appropriate stations will reconfigure themselves for the new algorithm (or
lack thereof).

→ NOTE: One caveat you should be aware. If you uninstall
an algorithm for which jobs corresponding to that algorithm are still being
processed in the string, those jobs will ultimately fail since they will be
passed to a station that has, in the interim, lost all memory of that algorithm.
This isn’t a problem, but you may opt to first let jobs corresponding to the
algorithm work themselves out before initiating the uninstall.

7/7/2005 17

S4PM 5.7.0 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

5. The Stringmaker Global Configuration File

The Stringmaker global configuration file is meant for parameters that are global across
all S4PM strings at a particular site. For sites that will install S4PM on multiple host
machines, some consideration needs to be given for how production will be parceled to
these strings.

5.1 File Name

The file name for the Stringmaker global configuration file is:

s4pm_stringmaker_global.cfg

5.2 $user

This parameter is MANDATORY.

The $user parameter is the name of the user account that will be managing and running
all S4PM strings. This S4PM user will own all files in the string. Stringmaker itself needs
to be run as this user.

Example:

$user = 's4pmuser';

5.3 $global_root

This parameter is MANDATORY.

The $global_root parameter is a root directory that is visible across all S4PM strings at
sites that support multiple S4PM strings running on multiple machines. Typically, this
variable is set to a cross-mounted directory such as the home directory of the S4PM user
or some directory therein. For sites where S4PM strings reside only on a single machine,
this variable can be set to $s4pm_root (see Section 4.4.1.3). The default is $HOME
directory of the user running Stringmaker.

Example:

$global_root = "/home/s4pmuser/s4pm";

7/7/2005 18

S4PM 5.7.0 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

5.4 $stringmaker_root

This parameter is MANDATORY.

When a S4PM string is first created, Stringmaker needs to do so from within a designated
directory where the Stringmaker configuration files reside (with the exception of the
algorithm configuration files which reside with the algorithms). This designated directory
then becomes the directory of the Configuration station in the string created. The
Configurator station can be viewed as the manifestation of Stringmaker within an S4PM
string.

The parameter $stringmaker_root is the directory from which Stringmaker is run and is
also the station directory of the Configuration station. As such, this directory must be
visible across all machines that host strings that are to be managed by Stringmaker and
Configurator (such as the cross-mounted home directory of the user running the strings).
The default is $HOME/stringmaker of the user running Stringmaker.

Example:

$stringmaker_root = "/home/s4pmuser/s4pm/stringmaker";

5.5 %run_env_variables

This parameter is OPTIONAL.

The %run_env_variables parameter is an optional hash that allows environment variables
to be set for algorithms running in the Run Algorithm stations of all strings. Hash keys
are the environment variable names and hash values are their values. Environment
variables defined here will apply to all algorithms running in all strings. To have distinct
environment variables for each machine, place the %run_env_variables hash in the
<host>.cfg file instead. To have distinct environment variables for each string, place the
hash in the <string>.cfg file instead. Note that the environment variable PATH is
predefined by S4PM and should not be set in this hash.

Example:

%run_env_variables = (
'LM_LICENSE_FILE' =>
"/usr/ecs/$mode/COTS/IMSLv3v4/license/license.dat",
'HDFLOOKPATH' => "/tools/gdaac/$mode/bin",
);

7/7/2005 19

S4PM 5.7.0 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

5.6 $dataserver_ur

This parameter is MANATORY if interfacing with ECS, OPTIONAL otherwise.

The $dataserver_ur parameter is the Universal Reference (UR) of the ECS Science Data
Server. This parameter is only needed if S4PM is interfacing with ECS.

Example:

$dataserver_ur =
'UR:10:DsShESDTUR:UR:15:DsShSciServerUR:13:[GSF:DSSDSRV]';

5.7. @privileged_users

This parameter is OPTIONAL.

The @privileged_users parameter is an array of users that are to be given permissions to
execute certain critical functions via the S4PM Monitor. The assumption here is that
S4PM is being run under a common user account (e.g. s4pmuser) yet you do not want
just anyone logged in as 's4pmuser' to execute some very critical functions. The critical
functions are shown below:

Critical Function Name Description
Kill All Kills all stations (stops them) and kills any

jobs running within those stations.
Bypass QA Force data to be registered within S4PM

(Register Data station) even if it fails
quality assurance (QA) checking.

Release Job Now Release a job that is running in the Select
Data station while accumulating input data
for an algorithm run.

Ignore Optional Instruct a job to stop looking for any more
optional input data for an algorithm (in the
Find Data station).

Ignore Required Instruct a job to stop looking for any more
required input data for an algorithm (in the
Find Data station).

Expire Current Timer Instruct a job to give up on the current
optional input it is looking for and move on
to the next (in the Find Data station).

Table 5-1. Critical operational functions for which the @privileged_users parameter

applies.

Users listed in the @privileged_users array will need to supply their own user logon ID
and password via a pop-up box. They will need to do this in additional to being logged in

7/7/2005 20

S4PM 5.7.0 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

as the S4PM user. If the user is in the @privileged_users array and the password is
correct will the user be allowed to run the task. Otherwise, the user will be denied from
running the task.

The user 'any' is reserved to mean any user. This might be useful if you want to use the
pop-up box as a sort of confirmation that the task is to be carried out (i.e. are you sure?).

If this array is unset or empty, then no pop-up box will be issued prior to running any of
the above tasks. This is the default.

→ NOTE: Application of the @privileged_users parameter
does not constitute a security measure. It only helps to prevent inadvertent
or accidental tasks from being run.

Example:

@privileged_users = (‘jdoe’, ‘rjones’, ‘msmith’);

5.8 Other Parameters

As alluded to earlier, other parameters discussed later that you find to be common across
all S4PM strings can be migrated "up the chain" into the s4pm_stringmaker_global.cfg
file.

7/7/2005 21

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

6. The Stringmaker Host Configuration File

The Stringmaker host configuration file is meant to handle parameters that may be
different from one host to another yet are common to all strings on a host. If certain
parameters described below are, in fact, global at your site,
you can opt to specify them in the s4pm_stringmaker_global.cfg file instead. In the
current release, however, the host configuration file is mandatory (although it can be
effectively empty).

6.1 File Name

The file name for the Stringmaker host configuration file is:

<host_name>.cfg

where <host_name> is the name of the machine. On UNIX machines, it is equivalent to
the output from the ‘uname –n’ command.

6.2 $domain

This parameter is MANDATORY if interfacing with ECS, OPTIONAL otherwise.

The $domain parameter is the Internet domain of the machines within the installation.
This assumes that all S4PM strings will be on machines within the indicated network.

Example:

$domain = 'gsfcb.ecs.nasa.gov';

6.3 $bindir

This parameter is MANDATORY.

The $bindir parameter is the directory where S4PM executables are located. This should
have been something you specified when installing S4PM. The location needs to be
visible across all S4PM strings on all machines.

Example:

$mode = "TS2";
$bindir = "/tools/gdaac/$mode/bin";

7/7/2005 22

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

6.4 $cfgdir

This parameter is MANDATORY.

The $cfgdir parameter is the directory where baselined configuration files are located. As
with the $bindir (Section 6.3), this should have been something you specified when
installing S4PM. The location needs to be visible across all S4PM strings on all
machines.

Note that $cfgdir does not refer to where the Stringmaker configuration files reside.
Rather, it is the location where other S4PM configuration files and configuration
templates reside after they are installed.

Example:

$mode = "TS2";
$cfgdir = "/tools/gdaac/$mode/cfg";

6.5 $s4pm_root

This parameter is MANDATORY.

The $s4pm_root parameter is the root directory under which S4PM strings are located.
For each string installed on this host, Stringmaker will make unique subdirectories for
each string and each instance of a string under this root directory.

Example:

$mode = "TS2";
$s4pm_root = "/vol1/$mode/s4pm";

6.6 $ingest_root

This parameter is MANDATORY.

The $ingest_root parameter is the root under which PDRs and PANs are exchanged with
the ECS. For each string installed on this host, Stringmaker will make unique
subdirectories for each string and each instance of a string under this root directory.

Example:

$mode = "TS2";
$ingest_root = "/vol1/$mode/s4ins";

7/7/2005 23

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

6.7 $data_root

This parameter is OPTIONAL.

The $data_root parameter is the root under which all data being managed by S4PM
reside. This includes data brought in from external sources (e.g. ECS) and data produced
within S4PM prior to being exported or distributed. Below $data_root, Stringmaker will
make subdirectories for each S4PM string and instance. The default is to put the data root
in a directory under $ecs_root (see next) named DATA.

Example:

$data_root = '/vol3/data/s4pm';

6.8 $ecs_root

This parameter is MANDATORY.

For ECS integration, the $ecs_root parameter is the root directory where the ECS custom
code is installed, in particular, the ECS Toolkit, SCLI, and DCLI. This setting also
defines where the data root directory is if you don't specify $data_root (see above).

Example:

$mode = "TS2";
$ecs_root = "/usr/ecs/$mode/CUSTOM";

7/7/2005 24

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

7. The Stringmaker Data Types Configuration File

The Stringmaker data types configuration file contains information about all data types
used in all strings. When a data type is specified in an algorithm configuration file (see
Section 10), either as an input or output, Stringmaker assumes that information about this
data type is specified in this file. An error is produced if a referenced data type is not in
this file.

7.1 File Name

The file name for the Stringmaker data types configuration file is:

s4pm_stringmaker_datatypes.cfg

7.2 %all_datatype_max_sizes

This parameter is MANDATORY.

The %all_datatype_max_sizes parameter is a hash containing maximum sizes in bytes of
the corresponding data types listed as the hash keys. For files whose sizes may be highly
variable, choose a reasonable maximum. It may be convenient to set up separate hashes
first (e.g. one for each mission or S4PM string) and then combine them into the
%all_datatype_max_sizes at the end.

For example:

%modis_max_sizes = (
 'MOD000' => 352_000_000,
 'MOD01' => 575_000_000,
 'MOD03' => 63_000_000,
);
%airs_max_sizes = (
 'AIRABQAP' => 2_000_000,
 'PMCO_HK' => 2_000_000,
 'PREPQCH' => 75_000_000,
);
%all_datatype_max_sizes = (%modis_max_sizes,
%airs_max_sizes);

7/7/2005 25

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

7.3 %all_datatype_versions

This parameter is MANDATORY.

For each data type listed in the %all_datatype_max_sizes hash (Section 7.2), the
%all_datatype_versions parameter hash lists data type versions. There must be an entry in
this hash for every data type listed in the %all_datatype_max_sizes hash. Furthermore,
data type versions specified in algorithm configuration files must match those set in this
configuration file.

Example:

map { $all_datatype_versions{$_} = '001'} keys
%all_datatype_max_sizes;
foreach my $dt (keys %all_datatype_max_sizes) {
 if ($dt =~ /^MOD/ and $dt ne 'MOD000') {
 $all_datatype_versions{$dt} = '005';
 } elsif ($dt =~ /^MYD/ and $dt ne 'MODPML0') {
 $all_datatype_versions{$dt} = '004';
 } elsif ($dt =~ /^AI/) {
 $all_datatype_versions{$dt} = '002';
 }
};

7.4 %ragged_file_trap

This parameter is OPTIONAL.

The %ragged_file_trap parameter is a hash listing those data types that should be trapped
if the temporal metadata do not align on the hour boundary. Generally, these are Level 0
data. When such data types are brought into S4PM, they will fail in the Register Data
station. Failure handlers are provided to either bypass the trap or have the offending data
purged. Hash values must be set to non-zero to enable the trap or zero to disable the trap.
Data types not listed at all in this hash are equivalent to setting their values to zero. All
data types listed in this hash must appear in the %all_datatype_max_sizes hash.

Example:

%ragged_file_trap = map {($_, 1)} (
 'MOD000',
 'MODPML0',
 'AM1ANC',
);

7/7/2005 26

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

7.5 %register_data_offsets

This parameter is OPTIONAL.

The %register_data_offsets parameter is a hash that lists temporal offsets to be applied to
data arriving in the Register Data station. The default is to apply no offset.

By default, S4PM names files coming in through Register Data according to the start
time as indicated in the accompanying metadata file. If the metadata only lists a single
date/time, S4PM uses this value in the file name. Sometimes, however, it is useful to
apply an offset to the time as indicated in the S4PM file name, for example to facilitate
easier production rules (particularly with model data). This is the primary use for
applying offsets.

Example:

%register_data_offsets = (
 'OZ_DAILY' => [-12 * 3600, +12 * 3600],
 'SEA_ICE' => [-12 * 3600, +12 * 3600],
);

7.6 @all_qc_datatypes

This parameter is OPTIONAL, but MANDATORY is %qc_output (Section 7.7) is set.

The @all_qc_datatypes parameter is an array that lists all data types where quality
control (QC) checking should be done. The particular QC checks done are set in the
%qc_output hash (next). For simplicity, one may set this array to all data types defined in
this file via:

@all_qc_datatypes = keys %all_datatype_max_sizes;

→ NOTE: The $has_qc parameter in the Stringmaker string
configuration file (see Table 9-1) controls whether or not QC checking is
turned on, regardless of what is in the @all_qc_datatypes array.

7/7/2005 27

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

7.7 %qc_output

This parameter is OPTIONAL.

The %qc_output parameter is a hash describing the types of QC checking to be
performed on data types produced in S4PM (those specified in the @all_qc_datatypes
array above; see Section 7.6). Standard QC checking includes s4pm_is_hdf.pl which
verifies that an HDF output can be opened as an HDF file (for HDF files only) and
s4pm_checksum.pl that computes a checksum for each output and includes that
checksum in the output PDR (if $use_checksums is enabled in the <string>.cfg file).
Other QC checks may be added. For example, checking file sizes for valid ranges.

The hash keys are data types and the hash values are lists consisting of one or more items
in the form:

<bbbbb> <script_command>

where <bbbbb> are 5 one-bit settings that have the following meaning:

• Bit 1 - Apply QC check to metadata file
• Bit 2 - Apply QC check to data file
• Bit 3 - Block export if QC fails
• Bit 4 - Block from Register Local Data if QC fails
• Bit 5 - Fatal (fail the algorithm)

and <script> is the QC script or command to run.

An illustration is:

%qc_output = (
 'MOD021KM' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl'
 '11110 /tools/gdaac/TS2/bin/s4pm_check_size.pl -f
../SizesModis.cfg',
],
 'MOD01' => [
 '11110 /tools/gdaac/TS2/bin/s4pm_checksum.pl'
 '11110 /tools/gdaac/TS2/bin/s4pm_check_size.pl -f
../SizesModis.cfg',
],
 'AM1EPHN0' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl'
],
 'MOD35_L2' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl',
],
);

7/7/2005 28

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

In the above example, for MOD021KM above, the QC checks are applied to both the
data file and the associated metadata files (bits 1 and 2). If a MOD021KM file fails the
data size checking, it is blocked from export (bit 3), blocked from going to the Register
Local Data station (this effectively blocks it from any upstream processing), bit 4, but
because bit 5 is set to zero, the algorithm will not fail in Run Algorithm, although a
message will be written to the log file.

7.8 %non_hdf_datatypes

This parameter is OPTIONAL, but MANDTORY is enabling QC on non-HDF data files.

The %non_hdf_datatypes parameter hash is used for marking data types as non-HDF. By
default, S4PM assumes that all data types are in HDF format. HDF validation is skipped
if the data type is listed in this hash. Hash values must be set to non-zero for data types
that are non-HDF and to zero (or not set) if the data types are HDF.

Example:

%non_hdf_datatypes = map {($_, 1)} (
 'MOD02SSN',
 'MYD02SSN',
);

7.9 %skip_checksum_datatypes

This parameter is OPTIONAL.

If check summing is turned on in a particular string (via $use_checksums in the
Stringmaker string configuration file), this hash lists data types where check summing
should not be done. Hash keys are the data types to skip and hash values should simply
be set to non-zero to skip check summing or to zero (or not set) to not skip check
summing.

Example:

%skip_checksum_datatypes = map {($_, 1)} (
 'MOD35_QC',
 'MYD35_QC',
 'MOD07_QC',
 'MYD07_QC',
 'MYD021QA',
);

7/7/2005 29

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

7.8 %data_file_qa

This parameter is OPTIONAL.

The %data_file_qa parameter is a hash that maps data types to commands to run on those
data files to assess quality in the Register Data station. Commands to run are arbitrary
and can include scripts, but they must return 0 if the data file passes QA and non-zero
otherwise. This QA is run in the Register Data station. A data file that fails QA causes the
job in Register Data to fail. The 'Bypass QA' failure handler allows a QA failure to be
bypassed; 'Purge Bad-QA Data' allows the offending data to be purged. Other failure
handlers for particular QA failures can easily be added.

The distinction between QA here and QC discussed in Section 7.7 is that QA is
performed on files coming into the Register Data station while QC is performed on files
produced in the Run Algorithm station.

Example:

%data_file_qa = (
 'AM1ATTN0' => 's4pm_attitude_check.pl -t .0002',
 'NISE' => 's4pm_nise_check.pl',
);

7.9 $s4pm_filename_pattern

This parameter is OPTIONAL.

The $s4pm_filename_pattern parameter is the pattern used by S4PM for constructing file
names used internally by S4PM. The pattern is a string containing format specifiers
describing how a file name in S4PM is to be built from the data type name and version,
the data time, and the production date and time. The format specifiers are based on those
used by the UNIX ‘date’ command format option.

If using this optional parameter, the environment variable S4PM_CONFIGDIR must be
set to the location of the Stringmaker configuration files. This is the same as the setting of
$stringmaker_root in the Stringmaker global configuration file. If S4PM_CONFIGDIR is
not set or if $s4pm_filename_pattern is not set, the file name pattern assumed is the
standard S4PM file name pattern.

Format specifiers come in two types, those that begin with the ^ character and those that
begin with the ~ character. Format specifiers that begin with the ^ character refer to data
time. Format specifiers that begin with the ~ character refer to the current time (same as
would be returned via the 'date' command on the machine in which this is running).

7/7/2005 30

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

Format Specifiers Description

^E Data type name
^V Data type version

^y or ~y Two-digit year
^Y or ~Y Four-digit year
^d or ~d Day of month (00-31)

^m or ~m Decimal month (00-12)
^b or ~b Abbreviated month name (Jan, Feb, etc.)
^B or ~B Long month name (January, February, etc.)
^j or ~j Day of year (000-366)

^H or ~H Hours on 24-hour clock (00-23)
^M or ~M Minutes (00-59)
^S or ~S Seconds (00-59)
^u or ~u Decimal day of week (1-7) with 1=Monday

~N Current time in form: YYYYjjjHHMMSS,
a shorthand for ~Y~j~H~M~S.

Useful for making file names unique.

Table 7-1. Allowable format specifiers for forming a file name pattern with the

$s4pm_filename_pattern parameter. The specifiers starting with the ^ character refer to
the data time; those with the ~ character refer to the production (or machine) time.

In addition to format specifiers, the pattern may contain other characters, words or some
punctuation (-, :, _). These become fixed in the file names built by S4PM.

→ NOTE: When using the $s4pm_filename_pattern
parameter, you MUST also set the environment variable
S4PM_CONFIGDIR to the location of the Stringmaker directory which
MUST be the same as the setting for $stringmaker_root in the Stringmaker
global configuration file. If S4PM_CONFIGDIR is not set or set to a non-
existent directory, S4PM will revert to assuming the standard S4PM file
name pattern.

7.9.1 File Name Pattern Restrictions

There are certain restrictions when setting up your own file name pattern in S4PM;

1. All file name patterns must contain the data type name and data type version.
2. All file name patterns must make use of the production date and time specifiers

(those beginning with ~) to ensure uniqueness of file names.
3. The data date must be included in the file name pattern (even if the time is not).

7/7/2005 31

S4PM 5.7.0 Installation and Configuration Guide: 6. The Stringmaker Data Types
Configuration File

The default value for $s4pm_filename_pattern is:

$s4pm_filename_pattern = "^E.A^Y^j.^H^M.^V.~N.hdf";

which produces the standard S4PM file name, for example:

MOD01.A2005067.0340.005.2005167124454.hdf

Here's another example:

$s4pm_filename_pattern = "^H^M-^Y^j.~H~M~S.^E.^V.~Y~j.dat";

which results in file names like:

0735-2000270.142731.MOD01.005.2005167.dat

7/7/2005 32

S4PM 5.7.0 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

8. The Stringmaker Static Configuration File

The Stringmaker static configuration file should not need to be modified (as its name
implies). This section will, however, discuss some of the details of this configuration file
in case you do find a reason to modify it.

8.1 File Name

The file name for the Stringmaker static configuration file is:

s4pm_stringmaker_static.cfg

The Stringmaker string configuration file specifies how to set up some of the S4PM
stations. Only those stations that exist for any S4PM configuration are specified in this
file. In some cases, some aspects of a station may be specified here whereas the rest is
specified in the s4pm_stringmaker_derived.cfg file (discussed later). Since this
configuration file is read in before any of the Stringmaker string configuration file is
read, anything having to do with particular data types or algorithms are not known to
Stringmaker at this time. Therefore, only those stations that can be set up without this
information (at least in part) are set up here.

The Stringmaker string configuration file is broken up into sections for each station that
gets specified. Within each station section, many aspects of the station are described. The
contents of the station station.cfg files are set in a very intuitive manner that can seen
below. In addition, mechanisms for specifying the symbolic links that need to exist in
each station as well as other aspects are shown as well.

The list of mechanisms shown below is not exhaustive, but only represent a sampling of
the most commonly used ones. In addition, the same mechanisms described below for
setting up stations are used in the Stringmaker derived configuration file. Some of the
examples, in fact, were taken from the Stringmaker derived configuration file.

8.2 %stations

Most of the information defined in the Stringmaker static (and derived) configuration
files is contained in the %stations hash. This hash contains a number of attributes that
define particular aspects of each station. Attribute names are either literals or names of
Perl variables. In either case, the way in which attribute X is set to value Y for station
Station is as follows:

$stations{‘Station’}{‘X’}

In the sections below, the various attributes of the %stations hash are discussed.

7/7/2005 33

S4PM 5.7.0 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

8.2.1 $cfg_station_name

The $cfg_station_name attribute of the %stations hash defines the station name for the
station. Stringmaker will use this value for the $cfg_station_name parameter in the
station.cfg file that it builds for this station.

Example:

$stations{'register_data'}{'$cfg_station_name'} = 'Register
Data';

8.2.2 $cfg_disable

The $cfg_disable parameter defines the value of the $cfg_disable parameter in the
station.cfg file for the particular station. If $cfg_disable is set to non-zero, Stationmaster
will consider the station disabled and non-participating in the string. If set to 0 or unset,
Stationmaster will consider the station enabled.

Example:

$stations{'register_local_data'}{'$cfg_disable'} = 0;

8.2.3 exec_symlinks

The exec_symlinks attribute is set to a list of executables that need to exist as symbolic
links in the station. Symbolic links are linked to the location where the S4PM binaries
have been installed (this directory is set by the $bindir parameter in the Stringmaker
global configuration file; see Section 5).

Example:

$stations{'prepare_run'}{'exec_symlinks'} =
['s4pm_prepare_run.pl',
's4pm_prepare_run_resync.pl'];

8.2.4 misc_symlinks

The misc_symlinks attribute is set to a hash of miscellaneous symbolic links that need to
exist in the station (other than those for executables covered by the exec_symlinks
attribute). Unlike with executable symbolic links (Section 8.2.3), the link as well as what
it is linking too need to be specified.

7/7/2005 34

S4PM 5.7.0 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

Example:

$stations{'repeat_daily'}{'misc_symlinks'} = {
 's4pm_allocate_disk.db' =>
'../allocate_disk/s4pm_allocate_disk.db',
 's4pm_allocate_disk.cfg' =>
'../allocate_disk/s4pm_allocate_disk.cfg'
};

8.2.5 $cfg_max_children

The $cfg_max_children parameter sets the maximum number of jobs (children) that can
be run in the station at a time. The default, if not set here, is 5.

For example:

$stations{'repeat_daily'}{'$cfg_max_children'} = 8;

8.2.6 %cfg_commands

The %cfg_commands parameter is a hash that specifies the commands that are to be run
in a station with the associated work order types. It is what the %cfg_commands
parameter is set to in the station.cfg files.

For example:

$stations{'sweep_data'}{'%cfg_commands'} = {
 'CLEAN' => '../s4pm_sweep_data.pl -config
../s4pm_allocate_disk.cfg -db ../s4pm_allocate_disk.db',
};

8.2.7 %cfg_downstream

The %cfg_downstream parameter is a hash that sets the stations to which output work
orders are directed. It is what the %cfg_downstream parameter is set to in the station.cfg
files.

Example:

$stations{'repeat_hourly'}{'%cfg_downstream'} = {
 'REPEAT_CLEAN_FILES' => ['repeat_hourly'],
 'ROLLUP_RUSAGE' => ['repeat_hourly'],
 'UPDATE' => ['track_data'],
};

7/7/2005 35

S4PM 5.7.0 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

8.2.8 %cfg_interfaces

The %cfg_interfaces parameter is a hash that sets the %cfg_interfaces parameter in the
station.cfg file. The %cfg_interfaces hash maps button names (which appear in the S4PM
Station Monitor window for a particular station or by right-clicking on the station name
in the S4PM Monitor) to actions to be carried out. Typically, these are used for bringing
up additional window applications (hence the name), but this is not required. The "thing"
run can be any command.

For example:

$stations{'sweep_data'}{'%cfg_interfaces'} = {
 'Restart All Failed Jobs' => 's4p_restart_all_jobs.pl',
};

8.2.9 %cfg_failure_handlers

The %cfg_failure_handlers parameter is a hash that sets the %cfg_failure_handlers
parameter in the station.cfg file. The %cfg_failure_handlers maps failure handler names
to scripts or commands to run when invoked. Such failure handlers are only available via
the S4PM Job Monitor window when a job fails (access it by clicking on the red failed
job box).

For example:

$stations{'receive_dn'}{'%cfg_failure_handlers'} = {
 'Remove Job' => 'remove_job.pl',
};

8.2.10 %cfg_manual_overrides

The %cfg_manual_overrides parameter is a hash that sets the %cfg_manual_overrides
parameter in the station.cfg file. The %cfg_manual_overrides maps button names to tasks
that carried out in a running job directory. The tasks can be scripts or commands.

For example:

$stations{'select_data'}{'%cfg_manual_overrides'} = {
 'Release Job Now' => 'touch RELEASE_JOB_NOW',
 'Modify Timer' => 'touch MODIFY_TIMER',
 'Modify Threshold' => 'touch MODIFY_THRESHOLD',
};

7/7/2005 36

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

9. The Stringmaker String Configuration File

The Stringmaker string configuration file is unique for each S4PM string. The string
configuration file is the configuration file where the algorithms to run, along with their
versions, and profiles are set. It is also where disk pools are sized. It is based upon the
algorithms selected in this configuration file that Stringmaker knows what algorithm-
specific configuration files to later read in.

9.1 File Name

There is no requirement for the actual file name although the recommendation is to name
the file for the $string_id parameter contained therein (see Section 9.2).

9.2 $string_id

This parameter is MANDATORY.

The $string_id parameter is an identifier for the string, used in both the Ingest polling
configuration and the USERSTRING for data requests. This is also the work order
pattern for work order in the Receive PAN station.

Example:

$stringid = "S4PM10_MO_FW";

9.3 $data_source

This parameter is MANDATORY.

The $data_source parameter is used to name the subdirectory under $s4pm_root (set in
the host or global configuration file) for this string. Thus, it serves as another identifier
for the string.

Example:

$data_source = 'terra';

9.4 $data_source_longname

This parameter is OPTIONAL.

The $data_source_longname parameter is a longer version of $data_source, a string
describing the data source corresponding to $data_source (Section 9.3). It is used in the
S4PM Monitor window title bar. If not specified, it is set to $data_source.

7/7/2005 37

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Example:

$data_source_longname = "MODIS Terra";

9.5 $instance

This parameter is MANDATORY.

The $instance parameter represents a subdivision under $data_source. Multiple strings
may be created with the same $data_source, but different values of $instance. The actual
S4PM string is installed in this directory:

$s4pm_root/$data_source/$instance

Originally, instance was interpreted as a "gear" that enabled a data source ($data_source)
to be subdivided up into forward processing and reprocessing (where gear would be set to
'forward' or 'reprocessing'). Now, $instance is a more generic interpretation in that it
represents any sub flavor of a data source including simple forward and reprocessing.

Example:

$instance = "reprocessing";

9.6 $host

This parameter is MANDATORY.

The $host parameter is the name of the host machine the string runs on.

Example:

$host = 'g0spg11';

9.7 $algorithm_root

This parameter is OPTIONAL.

The $algorithm_root parameter specifies the root directory under which algorithms for
this string are installed. Below this root, S4PM assumes that there is a subdirectory for
each algorithm that has the name of the algorithm. Below each algorithm directory,
S4PM assumes there is a version subdirectory that has the same name as the version.

For example:

$algorithm_root/MoPGE01/4.5.2/;

7/7/2005 38

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

If the algorithm root directory is global across all strings, this variable may be set in the
host or global configuration file.

If not set, the default is:

$s4pm_root/$data_source/pge

Example:

$algorithm_root = "/home/s4pmuser/algorithms";

9.8 @run_sorted_algorithms

This parameter is MANDATORY.

The @run_sorted_algorithms parameter is an array that sets the algorithms to run in this
string as well as their run order in the Run Algorithm station such that the first algorithm
in the list will be the one to run first if there is a choice. Stationmaster by default selects
the next job to run (when a slot is available) by simple shell order.

In general, to avoid algorithm starvation, it is best to give the most upstream algorithms
the highest order of preference.

Example:

@run_sorted_algorithms =
('GdPGE02B','MoPGE03','MoPGE02','MoPGE01');

9.9 @display_sorted_algorithms

This parameter is OPTIONAL.

While @run_sorted_algorithms is for sorting the priority of jobs for Stationmaster, the
@display_sorted_algorithms parameter sets the order the jobs should be displayed in the
S4PM Monitor. The default is to reverse @run_sorted_algorithms.

Example:

@display_sorted_algorithms =
('GdPGE02B','MoPGE03','MoPGE02','MoPGE01');

7/7/2005 39

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

9.10 %algorithm_versions

This parameter is MANDATORY.

The %algorithm_versions parameter is a hash that lists the algorithm versions to run in
this string. The hash keys are algorithm names (assumed to be listed in
@run_sorted_algorithms; Section 9.8) and the hash values are their versions. Algorithms
are assumed to be located in the directory specified by $algorithm_root in the host
configuration file or in the default location.

Example:

%algorithm_versions = (
 'MoPGE01' => '4.1.12',
 'MoPGE71' => '4.0.2',
 'MoPGE02' => '4.3.0',
 'MoPGE03' => '4.3.0',
);

9.11 %algorithm_profiles

This parameter is MANDATORY.

The %algorithm_profiles parameter is a hash that lists the algorithm profiles to be run in
this string. The hash keys are algorithm names (assumed to be listed in
@run_sorted_algorithms; see Section 9.8) and the hash values are their profiles (profiles
are a subdivision of version). Algorithms are assumed to be located in the directory
specified by $algorithm_root in the host configuration file or in the default location.

→ NOTE: Only those algorithms listed in the
@run_sorted_algorithms array are actually run in this string regardless of
what is in the %algorithm_versions or %algorithm_profiles (Section 9.11)
hash.

→ NOTE: The profile set in this hash must match the profile
portion of the algorithm configuration file name.

→ NOTE: Also remember that only those algorithms listed in
the @run_sorted_algorithms array are actually run in this string regardless
of what is in the %algorithm_profiles or %algorithm_versions (Section
9.10) hash.

7/7/2005 40

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Example:

%algorithm_profiles = (
 'MoPGE01' => 'RPROC',
 'MoPGE71' => 'RPROC',
 'MoPGE02' => 'RPROC',
 'MoPGE03' => 'RPROC',
);

9.12 %pool_capacity

This parameter is MANDATORY.

The %pool_capacity parameter is a hash that determines the storage capacity of the disk
pools that are set up for data. The hash keys are data types and the hash values are the
maximum number of files (not size in bytes) for which the capacity must be set. Using
the maximum number of files provided here and the maximum file size in bytes for each
data type specified in the s4pm_stringmaker_datatypes.cfg file, Stringmaker will
determine the sizes of each disk pool in bytes.

All data types (input and output) to be used in a string need to be specified here.

Example:

%pool_capacity = (
 'MoPGE01' => 100,
 'MoPGE02' => 170,
 'MoPGE03' => 150,
);

9.13
$config_files{'repeat_daily/s4pm_delete_expired_data.cfg'}{'%A
geLimits'}

This construct is OPTIONAL, but if not used, the parameter $data_expiration_max_hours
(Section 9.14) becomes MANDATORY.

This construct is used to specify the maximum age of data files beyond which S4PM will
delete them. Normally, S4PM deletes data when it knows that nothing else will need to
access it. S4PM keeps track of the maximum number of uses each data file will have and
it decrements the number of outstanding uses each time the file is used. When the number
of outstanding uses reaches zero, the file is deleted. Sometimes, however, a file may not
get used the number of times anticipated. That is where this hash comes in. The hash keys
are data types and the hash values are the number of hours beyond which to delete the
data regardless of any outstanding uses.

7/7/2005 41

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Data types not specified in this hash risk building up over time and, potentially, filling up
its disk pool beyond capacity. When this happens, processing in S4PM will likely grind
to a halt unless manual intervention is taken.

Example:

$config_files{'repeat_daily/s4pm_delete_expired_data.cfg'}{'
%AgeLimits'} = {
 'MOD01' => 8,
 'MOD03' => 8,
 'MOD021KM' => 8,
 'MOD02HKM' => 8,
 'MOD02QKM' => 8,
 'MOD02OBC' => 8,
};

9.14 $data_expiration_max_hours

This parameter is OPTIONAL (but see Section 9.13).

The $data_expiration_max_hours parameter is the number of hours after which any data
still resident within S4PM will be deleted from disk. Normally, data are deleted after all
outstanding uses for that data file have been used up (the outstanding uses falls to zero).
But the uses for some data may not fall to zero due to the production rules for optional
input (e.g. an optional data input may show up, but after the algorithm has already given
up on it). Thus, this parameter guarantees that data files won't build up indefinitely and
choke the system.

The value specified here will apply to ALL data types. If you want different values for
different data types, then see Section 9.13.

9.15 $stations{$station_name}{'$cfg_max_jobtime'}

This structure is OPTIONAL.

Optionally, for one or more stations you may specify maximum job times in seconds for
certain jobs running in that station. When a running job exceeds the maximum time, the
color of the box will change from green to yellow. This serves as a clue to operators that
there may be a problem to investigate. There is no other effect beyond the color change.
Hash keys are work order types for that station and hash values are the maximum number
of seconds. By default, no maximum time is configured.

For example:

$stations{'find_data'}{'$cfg_max_jobtime'} = {
 'MOREDATA_MoPGE01' => 2000,
 'MOREDATA_GdPGE02B' => 150,
 'MOREDATA_MoPGE03' => 1100,

7/7/2005 42

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

 'MOREDATA_MoPGE71' => 900,
 'MOREDATA_GdMOD02SS' => 90,
};

9.16 %proxy_esdts

This parameter is OPTIONAL.

The %proxy_esdts parameter is a hash that is only applicable for on-demand processing
(when $on_demand is set to non zero in the string configuration file) and even then, it is
optional. The %proxy_esdts hash provides a mechanism for mapping proxy data types to
actual data types (aka ESDTs). In on-demand processing, very often algorithms can
perform processing (e.g. subsetting) on any one of several to many data types. The easiest
way to approach this situation is to tell S4PM that a proxy data type will be used to
represent any one of the actual data types the algorithm will process. When this is done,
the algorithm need only be configured to work with one data type, the proxy, rather than
with a large list of data types.

Hash keys are the data type proxy names (which can be arbitrary) and the hash values are
lists of regular expression patterns that will match the data types the proxy represents.
As yet, proxy data types cannot be used in upstream processing.

For example:

%proxy_esdts = (
 'MODOCL23' =>
['M[OY][013AD][246OPS][1278MQWCFNS][WDAMB1]'],
 'MOD03' => ['M[OY]D03'],
 'AIRL2CRS' => ['AIRI2CCF','AIRX2RET','AIRX2SUP'],
);

9.17 S4PM Variance Parameters

The following Stringmaker host configuration file parameters have in common that they
modify in some way the configuration of the S4PM string.

9.17.1 Variance Toggle Switches

In the following cases, setting the parameter to non-zero enables the option; setting it to
zero or not setting it at all disables the option. Note that enabling some of these
parameters may require other parameters to be set as well. Such situations are indicated
below.

Parameter Description
$has_qc Turns on or off quality control (QC) checking of

files produced in Run Algorithm. This affects all

7/7/2005 43

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Parameter Description
QC checking in the string. The particular QC
checks performed (or not) are determined by the
%qc_output hash in the
s4pm_stringmaker_datatypes.cfg file.

$export_ph Turns on or off the exporting of the production
history (PH) tar files to the ECS archive (for those
algorithms producing a PH file). PH files are
treated somewhat like output data files. When this
parameter is disabled, PH files will build up in the
PH disk pool. A pseudo-cron job in the Repeat
Daily station will clean up these PH files after the
age out. When this parameter is enabled, the PH
files will be cleaned out once a successful PAN
has been received (same manner as with other
exported files).

$use_checksum Turns on or off one particular type of QC
checking: the computation of a checksum for the
data file (although check summing is not normally
considered a QC check, it is included in S4PM
QC checking for convenience). When turned on,
computed checksums are included in the Product
Delivery Records (PDRs)
used for exporting the data to the ECS.

$has_auto_request Turns on or off auto request functionality. When
enabled, the Auto Request station is added to the
string. This station and the associated Auto
Request tool provide some automation for
requesting data from the archive to initiate
processing.

$on_demand Turns on or off on-demand processing. When
enabled, a number of stations are disabled and
others are enabled. On-demand processing allows
processing to be somewhat event driven (as
opposed to data driven) where events (typically,
requests via a user client) are sent to S4PM in the
form of ODL files.

$dme Turns on or off all data mining in S4PM. When
enabled, the $sub_request_email and $pickup_dir
must also be set in this file.

$data_source_polling Turns on or off polling of input data from a disk
resource rather than from the ECS archive
(subscription or ordering). If set, the parameter
$data_source_polling_dir must also be set.

7/7/2005 44

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Parameter Description
@datapool_insert_datatypes By including any data types in this array, this

enables the insert of these data types to the ECS
data pool rather than the ECS archive. When so
enabled, the Insert Datapool station becomes
enabled in the string. When used, the
$datapool_staging_dir parameter (next) must also
be set in this file.

Table 9-1. Stringmaker host configuration file parameter switches that alter the behavior

of S4PM.

9.17.2 Other Variance Parameters

The following parameters are dependent upon the one above.

Parameter Description
$datapool_staging_dir This parameter is required if any data types are listed in the

@datapool_insert_datatypes array (see above). This
parameter sets the staging directory location on the machine
that runs the script to insert data files into the ECS data pool
action queue. The directory must be visible on that machine.

$sub_request_email This parameter is required if $dme is set to non-zero. The
$sub_request_email should be set to the e-mail address of the
user responsible for setting up subscriptions in ECS. The ‘@’
symbol needs to be escaped.

Example:

$sub_request_email = “help\@daac.gsfc.nasa.gov”;
$pickup_dir This parameter is required if $dme is set to non-zero. The

$pickup_dir should be set to the directory on ECS data pool
where output products will be placed. Typically, this
directory is in an anonymous FTP area where a Data Mining
Edition user can retrieve the data. The directory needs to be
local for that machine.

$scli_host If SCLI is not installed on the machine where S4PM is to be
run, this variable should be set to the machine where SCLI is
to be accessed remotely using secure shell. If SCLI is
installed locally, this variable should
be set to the empty string or unset.

$data_source_polling_dir This parameter must be set if $data_source_polling is set to
non-zero. The $data_source_polling must be set to the root of

7/7/2005 45

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

Parameter Description
the polling directory. The root directory is that directory
under which the category directories exist (e.g. MOAT,
MOOG) as configured in ECS data pool. It is under these
directories that the data type subdirectories exist named:

<datatype>:<versioned>

For example:

MOD08_M3.004

And under the data type directories are directories for each
date (YYYY.MM.DD as in 2004.11.27). Finally, under the
date directories, the data and XML files are assumed to
reside. Thus,

$data_source_polling_dir/<category>/<datatype>/<date>/data

In theory, any data area structured similar to the ECS data
pool can be used with this option.

Table 9-2. Stringmaker host configuration file parameters that depend upon the

parameters shown in Table 9-1.

9.18 %ordering_tool_parms

This parameter is OPTIONAL.

The %ordering_tool_parms parameter is a hash that configures the Ordering interface
available in the Request Data station. There are two attributes. The first is increment
which sets the width (in seconds) of the smallest interval in the Compose Data request
tool. The default is 7200 seconds which means that the display will show a day divided
up into 12 two-hour increments.

The second attribute is files_per_hour which affects the Fill Hole ordering interface. In
this tool, the total width is one 'increment' and it is sub-divided up into files_per_hour
sub-increments. The default is 12 meaning that each sub-increment is 300 seconds (if
'increment' is 7200).

For example:

%ordering_tool_parms = (
 'increment' => 7200,
 'files_per_hour' => 12,
);

7/7/2005 46

S4PM 5.7.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

9.19 Parameter Overrides

The Stringmaker string configuration files are often the files in which earlier defined
parameters can be overridden. For example, the data type SEA_ICE version may be
specified in the s4pm_stringmaker_datatypes.cfg file as '003'. In one string, however, you
need to use version '004' of this data type without affecting the '003' version used in all
other strings. The easiest way to do this is to put the following override statement in the
<string>.cfg file:

$all_datatype_versions{'SEA_ICE'} = '003';

For this one string, the version '003' trumps the '004' in the Stringmaker data types
configuration file.

7/7/2005 47

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

10. The Stringmaker Algorithm Configuration File

There must be at least one algorithm configuration file for each version of each
algorithm.

→ NOTE: Starting with S4PM 5.6.2, the format of the
algorithm configuration files has changed with the introduction of
Stringmaker, a replacement for Stringmaster. When using Stringmaker, the
new format must be used. Since Stringmaster will be phased out, you are
strongly encouraged to use Stringmaker and therefore, this new algorithm
configuration format.

Unlike with the Stringmaster algorithm configuration file, the Stringmaker algorithm
configuration file is used for both configuring a string and for running the string. Another
distinction between the two formats is that the Stringmaster algorithm configuration file
was in a parameter=value format whereas the Stringmaker algorithm configuration file is
in Perl syntax, like most other S4PM configuration files.

10.1 File Name

The file name for the algorithm Stringmaker configuration file must be:

<algorithm_name>_<profile_name>.cfg

where <algorithm_name> is the name of the algorithm and <profile_name> is the name
of the profile for this algorithm. A profile allows the same algorithm to have more than
one set of production rules.

For example:

MoPGE02_RPROC.cfg

10.1.1 Mandatory Parameters

A number of parameters are mandatory. The sections below describe these parameters.

7/7/2005 48

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

10.1.1.1 $algorithm_name

This parameter is MANDATORY.

The $algorithm_name parameter is a string representing the algorithm name. It must
match the name of the directory into which the algorithm is installed and the
$algorithm_name parameter set in the Stringmaker algorithm configuration file name.

Example:

$algorithm_name = 'MoPGE01';

10.1.1.2 $algorithm_version

This parameter is MANDATORY.

The $algorithm_version parameter is a string representing the algorithm version. It must
match the name of the subdirectory under the algorithm directory into which the
algorithm is installed.

Example:

$algorithm_version = '2.4.3m';

10.1.1.3 $algorithm_exec

This parameter is MANDATORY.

The $algorithm_exec is a string representing the name of the executable to run for this
algorithm. It may be a binary executable, script, or a wrapper script calling other scripts
or binaries. There can only be one value for this parameter.

10.1.1.4 $processing_period

This parameter is MANDATORY.

The $processing_period parameter is the processing period in seconds. It specifies over
what data time length the algorithm is to run (not wall-clock time!). If the processing
period is less than the time coverage specified for the trigger input data (see Section
10.1.1.11), multiple MOREDATA work orders will be produced (each resulting in a
algorithm run) spanning the processing period.

7/7/2005 49

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

→ NOTE: The start time of any particular algorithm run is
based upon the start time of a particular trigger data file. To make the
processing start time independent of the trigger data start time, use the
$processing_start parameter (Section 10.1.2.2).

If the $processing_period is set to zero and the $trigger_coverage (Section 10.1.1.7) is set
to zero, the number of work orders output and the start and end times of the processing
period written into the output work orders are determined by the start and end times of
the data in the NEWDATA input work order and the $product_coverage (Section
10.1.1.5). This is useful for production where the time coverage of the trigger data is not
fixed but the output product coverage is (for example, in direct broadcast).

Another production rule is triggered by setting both $processing_period and
$trigger_coverage to zero. In this case, the correct number of output work orders and the
processing start and stop times in those work orders will accommodate the trigger input
data coverages dynamically.

In summary:

Settings Production Rule Result
$processing_period = $trigger_coverage One run per trigger data file.
$processing_period < $trigger_coverage Multiple number (fixed) runs per trigger

data file (equal to
$trigger_coverage/$processing_period)

$processing_period = 0 and
$trigger_coverage = 0

Multiple number (dynamic) runs per trigger
data file enough to cover the particular input
with data time aligned with dynamic input.

Table 10-1. Possible settings of the $processing_period and $trigger_coverage
parameters and the resultant production rule invoked.

Example:

$processing_period = 300;

10.1.1.5 $product_coverage

This parameter is MANDATORY.

The $product_coverage parameter is the time coverage (in seconds) of the output
products. Note that the assumption here is that ALL output products from a algorithm
have the same time coverage. Although this attribute is somewhat redundant, since the
coverages of individual data types are already contained in this configuration file, it does
have a special purpose.

7/7/2005 50

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

In the case where the trigger input data coverages are not fixed in length (for example,
direct broadcast), the $product_coverage is used along with the start and stop times of the
input NEWDATA work order to dynamically determine the number of work orders to
output and the processing start and stop times in those work orders. Setting the
$processing_period and the $trigger_coverage to zero triggers this feature. See Table 10-
1.

Example:

$product_coverage = 300;

10.1.1.6 $metadata_from_metfile

This parameter is OPTIONAL.

For algorithms that employ the ECS Toolkit, the $metadata_from_metfile parameter
simply indicates whether metadata reads (of input data) should be from the
accompanying metadata files or from the files themselves which are assumed to be HDF.
The choice affects how the runtime PCFs are generated. Note, this setting applies to ALL
input products. The valid choices are 0 (all reads will be from HDF files) and 1 (all reads
will be from accompanying metadata files.

This parameter has no effect on algorithms that do not use the ECS Toolkit or for input
files that are not in HDF.

Example:

$metadata_from_metfile = 0 ;

10.1.1.7 $trigger_coverage

This parameter is MANDATORY.

The $trigger_coverage parameter is the time coverage of the trigger input in seconds.
Normally, this should match exactly the coverage for the trigger data type (see %inputs,
%outputs).

In on-demand processing, the $trigger_coverage associated with the PSPEC trigger input
is ignored.

Note that the $trigger_coverage in conjunction with the $processing_period can be used
to invoke several production rules. See Table 10-1.

7/7/2005 51

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

Example:

$trigger_coverage = 7200;

10.1.1.8 $pcf_path

This parameter is MANDATORY.

The $pcf_path parameter is the full or relative path to the SDP Toolkit's Process Control
File (PCF) template for this particular algorithm. This PCF template will be the basis for
generating the runtime PCFs for each algorithm run.

Example:

$pcf_path = "../prepare_run/GDAAC.PGE01.pcf.tpl ";

10.1.1.9 @stats_datatypes

This parameter is MANDATORY.

The @stats_datatypes parameter is an array that contains a list of output data types on
whom performance statistics are to be generated in the Run Algorithm station. Not all
data types necessarily need to be listed here. But it is simpler to list them all.

Example:

@stats_datatypes = ('MOD01', 'MOD03');

10.1.1.10 $stats_index_datatype

This parameter is MANDATORY.

The $stats_index_datatype parameter is set to the one data type listed in the
@stats_datatypes (Section 10.1.1.9) considered to be the index or main data type.

$stats_index_datatype = 'MOD01';

10.1.1.11 %inputs, %outputs

These parameters are MANDATORY.

The %inputs hash describes dynamic inputs data used by the algorithm and the %outputs
hash describes dynamic output data generated by the algorithm. Static input files are
assumed to permanently reside with the algorithm and are fixed in the algorithm's PCF

7/7/2005 52

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

template file. All possible input data and all possible output data must be described in
these hashes.

The hash keys are unique tags such as input1, input2 and output1, output2. They can be
any string as long as they are unique within their respective hashes.

For each such key, a number of attributes and their values describe various aspects of the
input and output data. These attributes are described in the following table:

Attribute Description
data_type The data type name (ESDT ShortName if

in ECS) of the input or output. May be a
proxy data type (see 10.1.1.11.1)

data_version The data type version (ESDT VersionID if
in ECS) of the input or output. May be for
a proxy data type. See 10.1.1.11.2.

need For inputs, this sets the need; for outputs, it
is generally ignored, but can be used to set
spatial region identifiers. See Section
10.1.1.11.3. Valids are: REQ, REQn,
TRIG, OPTn, Spatial_Tag.

timer Input wait timer in seconds. Ignored for
outputs. See 10.1.1.11.4.

lun PCF logical unit number (LUN). See
Section 10.1.1.11.5.

currency The input currency. Valids are: CURR,
PREVn, FOLLn, NPREVn, NFOLLn. See
10.1.1.11.6.

coverage The time coverage in seconds of the input.
Ignored for output. See Section 10.1.1.11.7.

boundary Data boundary. See Section 10.1.1.11.8.

Table 10-2. Hash attributes of the %inputs and %outputs hashes in the Stringmaker
algorithm configuration file.

Below is an example for an algorithm that produces one output from two inputs:

%inputs = (
 'input1' => {
 'data_type' => 'MOD01',
 'data_version' => '005',
 'need' => 'TRIG',
 'timer' => 0,
 'lun' => '79901',
 'currency' => 'CURR',
 'coverage' => 300,
 'boundary' => 'START_OF_DAY',
 },

7/7/2005 53

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

 'input2' => {
 'data_type' => 'MOD03',
 'data_version' => '005',
 'need' => 'REQ',
 'timer' => 0,
 'lun' => '79920',
 'currency' => 'CURR',
 'coverage' => 300,
 'boundary' => 'START_OF_DAY',
 },
);
%outputs = (
 'output1' => {
 'data_type' => 'MOD02',
 'data_version' => '005',
 'lun' => '79901',
 'currency' => 'CURR',
 'coverage' => 300,
 },
);

10.1.1.11.1 data_type

The data_type attribute is needed for both input and output entries. It is the data type
name (ESDT ShortName if in ECS). If the data type is to be from the ECS archive, there
must be a valid ESDT descriptor file for this data type and version installed and
configured in the ECS.

For on-demand processing, the output data types do not get archived and, therefore, there
is no need for a valid ESDT descriptor file in the ECS.

10.1.1.11.2 data_version

The data_version attribute is needed for both input and output entries and is the data type
version (VersionID associated with the ESDT ShortName in ECS).

10.1.1.11.3 need

The need attribute expresses whether the input is required or optional and to what degree.
This field is ignored for output files except in the case where it is used to tag spatial
regions (see Section 10.1.2.11). The following table lists the possible settings for the need
attribute and their meanings:

7/7/2005 54

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

need Setting Descriptions

REQ, REQn The input is required; the algorithm cannot run without it. The n
is an integer expressing the order of preference of the input
relative to others having the same LUN (with 1 being the most
preferred). Note that REQ is equivalent to REQ1. This alternate
input production rule is used in the case where some data file for
this LUN is required.

TRIG Same as REQ (which is the same as REQ1), but this marks the
input as the data type that triggers the algorithm. The trigger input
MUST be the one set for DATA_TYPE_TRIGGER and MUST
be the first input in this configuration file. Multiple algorithms
may use the same data type as a trigger.

OPTn The input is optional; the algorithm will run without it. The n is
an integer expressing the order of preference of the input relative
to others having the same LUN (with 1 being the most preferred).
Unlike with REQn, if none of the data files for this LUN are
found, the algorithm will still be run.

Table 10-3. Possible setting of the need attribute in the %inputs hash in the Stringmaker

algorithm configuration file.

10.1.1.11.4 timer

The timer attribute is the timer in seconds that represents how long the production system
should wait for the input. The timer for required input (anything with a need of REQn)
starts once the trigger input arrives. The timer for optional input (anything with a need of
OPTn) starts once all of the required input arrives. The timer is ignored for the trigger
data type and for all outputs.

10.1.1.11.5 lun

This is the logical unit number (PCF) associated with this data type as listed in the PCF
template.

10.1.1.11.6 currency

The currency expresses how the input data is aligned with the trigger data file in terms of
start and stop times. This field is ignored for output files. Valid settings are described in
the table below:

7/7/2005 55

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

currency Setting Description

CURR The input is contemporaneous with the algorithm processing
period

PREVn The input is n steps previous to the algorithm processing period
(by increments equal to the time coverage of the input itself). A
PREV1 means the previous data file, a PREV2 means the data file
before that, etc.

FOLLn The input is n steps following the algorithm processing period (by
increments equal to the time coverage of the input itself). A
FOLL1 means the following data file, a FOLL2 means the data
file following that, etc.

NPREVm,n The input requested is the nearest in time (looking backward) to
the processing period of the algorithm. The n and m are integers
that specify how far to begin looking back and how far to look
back. m is an integer that specifies where to begin looking back
with 0 being the current time period (equivalent to CURR). n is
an integer that specifies the last time period to look back.

For example, 'NPREV0,4' means look first for the current data
file (that's what the 0 means). If that is not available, then look for
the previous one (equivalent to PREV1). If that is not available,
then look for the one previous to that (equivalent to PREV2). And
so on with the equivalent to PREV4 being that last one. To do the
same thing but omit the current data file in the search, use
'NPREV1,4' instead.

The Select Data station will, in fact, convert NPREVm,n into the
appropriate CURR and/or PREVn equivalents. The timer
associated with each equivalent entry will be the original timer
split evenly among the equivalents. Thus, if we used 'NPREV0,3'
and a timer of 7200, the current data file would be searched for up
to 1800 seconds. If it wasn't found within that time period, the
search for the next, PREV1, would begin and expire 1800 seconds
later. If that data file wasn't found, the search for PREV2 would
commence and so on.

NFOLLm,n This functions the same as NPREVm,n described above, except
the input requested is the nearest in time looking forward.

Table 10-4. Possible setting of the currency attribute in the %inputs hash in the

Stringmaker algorithm configuration file.

10.1.1.11.7 coverage

The coverage attribute is the temporal coverage of the data in seconds.

7/7/2005 56

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

10.1.1.11.8 boundary

The boundary attribute is the data boundary against which to determine start times of
input data files. Valids are START_OF_WEEK, START_OF_DAY,
START_OF_12HOUR, START_OF_8HOUR, START_OF_6HOUR,
START_OF_4HOUR, START_OF_2HOUR, START_OF_HOUR, START_OF_MIN,
and START_OF_SEC. An offset in seconds, plus or minus, may be applied to the
boundary (e.g. START_OF_DAY-3600 to make the boundary be 23:00 hours rather than
00:00 hours). This attribute is ignored for output files.

10.1.1.12 %input_uses, %output_uses

These parameters are MANDATORY.

These two hashes specify the number of times each data type is used by this algorithm.
The hash keys are the data type names and the hash values are the number of uses for that
data type. For outputs, the number of uses is almost always set to 1 (the export of a
product is considered a use). For inputs, consider how many runs of the algorithm will
use that input. Typically, it is 1. But for inputs spanning a long range in time, several runs
of the algorithm may be needed to process the entire file.

Example:

%inputs_uses = (
 'MOD000' => 9,
 'AM1ATTN0' => 9,
 'AM1EPHN0' => 9,
);

%output_uses = (
 'MOD01' => 1,
 'MOD03' => 1,
);

10.1.2 Optional Parameters

The following parameters are optional in that they are only needed if the particular
functionality is desired.

10.1.2.1 $post_processing_offset, $pre_processing_offset

These parameters are OPTIONAL.

7/7/2005 57

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

By default, the beginning of the algorithm processing period is aligned with the start time
of the input trigger data file. An offset from that alignment can be specified here as
positive or negative seconds. If positive, the processing period will start after the trigger
data file time by the amount specified. If negative, the processing period will start before
the trigger data file time by the same amount. The default is zero if not specified.

With $post_processing_offset, the offset is applied in a post examination sense. That is,
the Select Data does its determination of data times relative to the processing period
assuming no offset (e.g. the definition of current or previous data file is based on no
offset). Only at the point where the processing start and stop times are written into the
output PDR is the processing offset applied.

With $pre_processing_offset, the offset is applied in a pre examination sense. That is, the
Select Data station does its determination of data times relative to the processing period
assuming this offset (e.g. the definition of current or previous data file is based on this
offset).

Examples:

$pre_processing_offset = 300;

$post_processing_offset = 600 ;

10.1.2.2 $processing_start

This parameter is OPTIONAL.

By default, the processing start time is aligned to the start time of the trigger data file
(with PRE_ or POST_PROCESSING_OFFSET applied). To make the processing start
time completely independent of the start time of the trigger data, use
PROCESSING_START. Valids are the same as is used for data boundary, for example:
START_OF_WEEK, START_OF_DAY, START_OF_6HOUR, START_OF_HOUR,
START_OF_MIN, and START_OF_SEC. Unlike data boundaries, however, offsets of
plus or minus cannot be added to these.

10.1.2.3 $make_ph

This parameter is OPTIONAL.

The $make_ph parameter enables or disables the generation of a production history (PH)
tar file associated with every run of the algorithm. The PH tar file contains logs and other
information about the run that may be useful in debugging an algorithm.

To enable PH generation, set this parameter to a non-zero value. To disable, set it to zero
or leave it unset. The default is to not produce a PH file.

7/7/2005 58

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

Example:

$make_ph - 1;

10.1.2.4 $apply_leapsec_correction

This parameter is OPTIONAL.

The $apply_leapsec_correction parameter indicates whether the leap second and AIRS
instrument offset corrections should be applied to the process start and stop times (LUNs
10258 and 10259) in the runtime PCF. If set to zero, no leap second or instrument offset
corrections are applied to the start and stop times. If set to non-zero, the leap second and
instrument offset corrections are applied to the start and stop times in the runtime PCF.
The default is 0 (disabled).

This option does NOT affect the data start and stop times by which Find Data will search
for data. For that, see $leapsec_datatypes.

→ NOTE: Enabling PH generation doesn't necessarily mean
that the PH will be exported to the archive. That is controlled by the
$export_ph parameter in the Stringmaker string-specific configuration file.

→ NOTE: This parameter is pertinent only to AIRS data
processing and will likely be removed from the S4PM baseline.

Example:

$apply_leapsec_correction = 1;

10.1.2.5 $leapsec_datatypes

This parameter is OPTIONAL.

This parameter is a comma or space delimited list of data types in which the leap second
and AIRS instrument offset corrections should be applied. This affects the data times and
thus the file name patterns that Find Data will use to search for inputs. This option does
NOT affect the process start and stop times in the PCF (LUNs 10258 and 10259). For
that, see $apply_leapsec_correction.

7/7/2005 59

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

→ NOTE: This parameter is pertinent only to AIRS data
processing and will likely be removed from the S4PM baseline.

Example:

$leapsec_datatypes = "AIRIASCI AIRIACAL AIRIBRAD";

10.1.2.6 $algorithm_station

This parameter is OPTIONAL.

This parameter is used rarely. Normally, all algorithms run within the single Run
Algorithm station. There is the option, however, to have one or more algorithms run in
other stations that have a different name than 'Run Algorithm'. This parameter sets that
name. Other than the name of the station, there is no functional difference between it and
the Run Algorithm station. The value specified in this parameter will become the station
directory name of the alternate Run Algorithm station. The S4PM Monitor will display
these extra Run Algorithm stations.

Example:

$algorithm_station = 'run_special_algorithm';

10.1.2.7 %specialized_criteria

This parameter is OPTIONAL.

The %specialized_criteria parameter option is only used for on-demand processing and
only for algorithms that need to have runtime parameters passed from the user's client,
through the V0 Gateway and into the runtime PCF. On-demand algorithms that read the
PSPEC file directly do not need this parameter set.

For each of the specialized criteria from the request ODL that are to appear in the runtime
PCF, a hash key-value pair must be added to the %specialized_criteria hash as illustrated
below:

%specialized_criteria = (
 '21200' => 'FORMAT|MOD021KM.005, MOD02HKM.005,
MOD02QKM.005',
 '21210' => 'CHANNELS|MOD021KM.005, MOD02HKM.005,
MOD02QKM.005',
);

The hash keys are simply the PCF LUNs in which the runtime parameter will be placed.
The hash values have two parts separated by a pipe (|) character. The first part is the

7/7/2005 60

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

specialized_criterion_name, which must match exactly the specialized criterion name as
it appears in the request ODL file and the second part is a list of data type and version
against which this specialized criterion applies.

In the above example, the runtime PCF will contain an entry for LUN 21200. That
runtime parameter will be named 'FORMAT' and the value contained in LUN 21200 will
be what ever was contained in the request ODL specialized criterion named 'FORMAT'
(e.g. a format specification) if the data type was one of the ones listed. The PCF will also
contain LUN 21200 with the name 'CHANNELS' and it will contain, presumably, a list
of channels.

The list of data types (and versions) is necessary since different data types might have
different specialized criteria associated with them.

10.1.2.8 %file_accumulation_parms

This parameter is OPTIONAL.

The %file_accumulation_parms parameter is a hash that is used for algorithms that
invoke the file accumulation production rule. This production rule can be used when
there are many files of a particular data type needed as input to a single run of the
algorithm and is particularly useful if that data type is the trigger data type.

Normally, each arriving trigger file will result in a separate run of the algorithm. Using
the file accumulation production rule, however, the arriving data files will accumulate to
a specified number and only then trigger a single run of the algorithm on the set of
accumulated files.

When invoked, the file accumulation production puts the Select Data station into another
mode where it polls for the data needed. Normally, polling for data is the job of Find
Data station, but Select Data polls at a far lower frequency. Once sufficient data have
been located, Select Data reverts to its normal mode of operation and determines what
other data are needed by the algorithm. Then, the work order is passed to the Find Data
station as normal.

The %file_accumulation_parms hash is a consolidation of a recipe of steps that had to be
set individually in previous releases of S4PM. This complex and error-prone recipe is still
supported but should be considered deprecated.

The follow table describes the attributes in the %file_accumulation_parms hash:

7/7/2005 61

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

Attribute Description

window_width This sets the width of the accumulation window in seconds, the
time period over which data are to be accumulated.

window_boundary This sets the boundary against which to align the accumulation
window itself. Valids are the same as are available for the
'boundary' attribute of the %inputs hash.

polling_interval Sets how often in seconds the data to be accumulated are polled
for.

timer Sets the maximum amount of time to wait in seconds for all files
to accumulate.

file_threshold Sets the minimum number of files needed by the algorithm. If the
file_threshold has been met by the time the timer is up, the job
will succeed. If that minimum hasn't been met, the job will fail.

Table 10-5. Hash attributes of the %file_accumulation_parms hash in the Stringmaker

algorithm configuration file.

For example:

%file_accumulation_parms = (
 'window_width' => 86400,
 'window_boundary' => ' START_OF_DAY',
 'polling_interval' => 7200,
 'file_threshold' => 10,
 'timer' => 86400*3,
)

10.1.2.9 $preselect_data_args

This parameter is OPTIONAL.

The $preselect_data_args parameter specifies the arguments that are to be passed to the
s4pm_preselect_data.pl script running in the Select Data station. This was a necessary
step to invoke the file accumulation production rule.

The %file_accumulation_parms parameter, however, makes this parameter obsolete.

If you choose to use the $preselect_data_args, the arguments to specify are the polling
interval with the -i option, the file threshold with the -thresh argument, and the timer with
the -timer argument. For definitions of these attributes, see B.1.2.8.

For example:

$preselect_data_args = '-i 7200 - thresh 10 -timer 86400';

7/7/2005 62

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

10.1.2.10 $trigger_block_args

This parameter is OPTIONAL.

The $trigger_block_args specifies the command to implement blocking in S4PM. A
block prevents new data showing up in S4PM (vi the Register Data station) from
triggering a new run of an algorithm for which they are associated. A block is defined
over a particular time interval such that data arriving whose times are outside of that
interval are allowed to trigger new algorithm runs, but those occurring within the interval
are quietly removed.

Once a block is defined for a particular time interval, that block is not actually created
into the first data falling within that interval arrives. This first arriving data is allowed to
trigger an algorithm run, but all subsequent ones will be blocked.

Blocks are typically used with the file accumulation production rule where the trigger
data type is the data type to be accumulated. In such a case, you only want one of the data
types within an interval to trigger a run, not all of them.

The %file_accumulation_parms hash parameter makes this parameter obsolete for this
purpose as it already handles the blocking implicitly.

10.1.2.11 Spatial Identifiers

This feature is OPTIONAL.

In S4PM, data files are named using the data time and the production time (see Section
6.5.1).. This leads to the question of how an algorithm might produce multiple distinct
data sets that share the same temporal coverage and therefore, the same file name. Unless
S4PM can make each file name distinct, one file will overwrite the other.

The answer to the above problem is to allow, for this unique situation, a way to modify
the file name with something unique for each such file. This is accomplished in S4PM
using the need attribute of the %outputs hash which, for output files, is normally not
used. If S4PM detects a value for need in the %outputs hash, it interprets this value as
something to include in the output file name. Thus, this normally unused attribute is co-
opted for this use.

The value specified for the need, in this situation, can be any string that will be made part
of the output file name (after the data type). A unique tag in this field must be associated
with each unique output LUN having the same data type name and version (ESDT
ShortName and VersionID in ECS). The file names referred to here are those that exist in
the S4PM file system.

The following constraints apply for spatial subsetting:

7/7/2005 63

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

 * All spatial subsets must use the same data type name and version.
 * Each subset must use a unique PCF LUN and all possible LUNs must appear in the
PCF template. Typically, each corresponds to a unique region.
 * For now at least, the subsetted products cannot be used as input to downstream
algorithms.

Below is an example of how spatial subsets may be configured in an algorithm
configuration file. Here, an algorithm outputs data types MOD02SSH and MOD02SSN
which are handled in the normal way. But in addition to these data, the algorithm also
produces spatial subsets in data type MOD021SC. All MOD021SC data have the same
temporal coverage, but are uniquely identified by the 3-character values set with the need
attribute. The values in this field will become part of the file name in S4PM:

%outputs = (
Regular output
 'output1' => {
 'data_type' => 'MOD02SSH',
 'data_version' => '004',
 'lun' => '22222',
 'currency' => 'CURR',
 'coverage' => 300,
 },
 'output2' => {
 'data_type' => 'MOD02SSN',
 'data_version' => '004',
 'lun' => '22225',
 'currency' => 'CURR',
 'coverage' => 300,
 },
Spatial output
 'output3' => {
 'data_type' => 'MOD021SC',
 'data_version' => '004',
 'lun' => '30001',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'FLX',
 },

7/7/2005 64

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

 'output4' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30002',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'BAP',
 },
 'output5' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30003',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GTP',
 },
 'output6' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30004',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GTX',
 },
 'output7' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30005',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'DCB',
 },
 'output8' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30006',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GOM',
 },

7/7/2005 65

S4PM 5.7.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

 'output9' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30007',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'NOS',
 },
);

→ NOTE: All possible spatial identifiers have to be specified
in the algorithm configuration file even though in any one run, there may be
only a few, one, or no data produced.

This feature can be used in any situation where multiple outputs of the same data type,
data version, and data time need to be produced with distinct file names. Although the
example showed spatial identifiers with only three characters, any length string will
work.

7/7/2005 66

S4PM 5.7.0 Installation and Configuration Guide: 11. The Stringmaker Jobs
Configuration File

11. The Stringmaker Jobs Configuration File

The optional Stringmaker jobs configuration file is identical to the
s4pm_max_children.cfg configuration file of Stringmaster. Its sole purpose is to specify
the maximum number of jobs per station per string. Unless specified in this file, the
default maximum for most stations is five.

11.1 File Name

The file name of the Stringmaker jobs configuration file is:

s4pm_stringmaker_jobs.cfg

The only parameter in the s4pm_stringmaker_jobs.cfg file is a double-keyed hash,
%max_children, whose first and second keys are the string ID and station, respectively.
The hash values are the maximum number of jobs to run in that station of that string.

For example:

$max_children{'S4PM10_MO_FW'}{'run_algorithm'} = 3;
$max_children{'S4PM10_MO_FW'}{'run_algorithm71'} = 1;
$max_children{'S4PM10_MO_FW'}{'find_data'} = 5;
$max_children{'S4PM07_AI_FW'}{'find_data'} = 72;
$max_children{'S4PM07_AI_FW'}{'run_algorithm'} = 5;
$max_children{'S4PM07_MY_FW'}{'run_algorithm'} = 6;
$max_children{'S4PM07_MY_FW'}{'run_algorithm71'} = 1;

The string IDs (first hash key) must match exactly the $stringid parameter as specified in
a Stringmaker string configuration file for a string (see Section 9.2). The station (second
key) must be the name of a station as identified by its directory name. Note that this file
only needs to contain those strings and stations for which the default is not acceptable.

The stations that typically one wants to have in this file are:

• Run Algorithm (run_algorithm)
• Find Data (find_data)
• Allocate Disk (allocate_disk)

The Modify Max Children tool available from the S4PM Monitor allows one to modify
"on-the-fly" the maximum number of jobs for a particular station within a particular
string. In fact, this tool will update the s4pm_stringmaker_jobs.cfg file to reflect those
changes (at the bottom along with a timestamp).

7/7/2005 67

S4PM 5.7.0 Installation and Configuration Guide: 11. The Stringmaker Jobs
Configuration File

→ NOTE: There is one important caveat with this tool,
however, in the current release of S4PM: The Modify Max Children tool
can only modify stations and strings that are already in the
s4pm_stringmaker_jobs.cfg file. If, for example, the 'run_algorithm' station
for string S4PM10_AU_FW is not already in the Stringmaker jobs
configuration file, the Modify Max Children tool cannot set or modify it.

7/7/2005 68

S4PM 5.7.0 Installation and Configuration Guide: 12. The Stringmaker Derived
Configuration File

12. The Stringmaker Derived Configuration File

The Stringmaker derived configuration file, like Stringmaker static configuration file,
should not need to be modified. Its purpose is to be the bottom feeder among all of the
other Stringmaker configuration files. Using the information specified before it on data
types and algorithms and variances, s4pm_stringmaker_derived.cfg finalizes the
configuration of the S4PM string. It does so by completing the configuration information
of stations defined earlier by static configuration file and by building other stations from
scratch.

12.1 File Name

The file name for the Stringmaker derived configuration file is:

s4pm_stringmaker_derived.cfg

Like the static configuration file, the derived configuration file is broken up into sections
for each station that gets specified. The information described in Section 4.4.4 for the
s4pm_stringmaker_static.cfg configuration file applies equally to the
s4pm_stringmaker_derived.cfg file as well.

7/7/2005 69

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

13. Working With Algorithms

This section discusses the heart of any S4PM string, the algorithms running within.

13.1 What Algorithms Can S4PM Support?

Essentially any algorithm code can be supported by S4PM. The following, however, are
some things to consider:

1. Algorithms should not assume a particular directory structure. This means that the
output file locations, input file locations, and the location from which the algorithm
is running should not be hard coded into the algorithm. An algorithm that does hard
code these items can be made to work in S4PM, but it requires extra work.

2. Algorithms should produce metadata files for the products they produce. The

metadata format is ODL or XML using the EOSDIS data model. Algorithms that
don't produce metadata will need to be wrapped by a script that carries out this
function for them.

3. An algorithm that requires command line arguments can be handled easily so long

as the arguments are static, that is, they don't change from one run to another. If this
is not the case, a wrapper script would need to be written that finds and sets the
runtime value of any dynamic arguments.

13.2 Algorithm Production Rules

S4PM supports a fairly rich set of production rules that control the inputs that each
algorithm sees at runtime. A summary of the production rules supported in S4PM is:

• Basic production of one or more products having the same temporal coverage as
the input.

• Time-shifted inputs forward or backward in time relative to the triggering input.
• Time-shifted processing period relative to the triggering input.
• Designation of both required and optional input.
• Multiple alternate inputs, both required and optional, with order or preference

specified.
• Wait timers on all inputs (except the triggering input).
• Spatial subsetting whereby all output have the same temporal coverages, but are

spatially distinct.
• Input accumulation to support daily or multi-day compositing or aggregating

algorithms.
• Proxy data types that represent more than one input data type.

7/7/2005 70

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

13.3 Production Rule Concepts

13.3.1 Simple Production Scenarios

INPUT A ⇒ Algorithm ⇒ OUTPUT C

The simplest production rule is an algorithm that reads in one data file of data type A and
outputs one data file of data type C. Such an algorithm will run every time a data file of
data type A arrives. If three such data files arrive at once, three separate runs of the
algorithm will be kicked off in S4PM. Here, we assume that the time coverage of the
output is the same as the time coverage of the input. Further, we assume each run is
completely uncorrelated. Hence, if the input data type A file is has a coverage from Oct
23, 2004 10:00:00 to Oct 23, 2004 10:05:00, the time coverage of the output C will be the
same. The above is a description of the most simple production rule.

INPUT A
 ⇒ Algorithm ⇒ OUTPUT C
INPUT B

A slightly more complex (and realistic) production rule is one that has more than one
input. For example, data types A and B are both needed to produce one output file of data
type C. In this case, a run of the algorithm will not occur until both data types A and B
arrive. We can just as easily have three or more inputs. Likewise, the number of outputs
is unrestricted. In fact, an algorithm may produce no output at all (for example, an
algorithm that updates a database with a new table row without producing any output
file).

 INPUT A (Trigger)
 ⇒ Algorithm ⇒
OUTPUT C
INPUT B (1 Step Earlier)

In the above examples, we assumed that the time coverage of the output files matched
that of the input. But this is not a requirement. In fact, S4PM can support the notion of
time-shifted inputs. An algorithm may need one or more of its inputs shifted in time
(backward or forward) relative to a data type designated as the trigger data type. For
example, if we designate input A as the trigger, an algorithm may require that input B not
have the same time coverage as A, but be the one earlier in time.

S4PM further supports optional inputs. An algorithm will not be run unless all of the
required inputs are available. If an input data type is designated as optional, the algorithm
will look for that data type, but if it cannot be found within a configurable time limit, the
algorithm will run without. There can be more than one optional input and these optional
inputs can be ordered as to what is the most desired through what is the least desired.
S4PM will attempt to use the most desired optional input. If not available, it will attempt

7/7/2005 71

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

to look for the next most-desired input, etc. If none of the optional inputs are available,
the algorithm will run without it.

You will often see the term PGE. This simply refers to the algorithm and in this context,
PGE is synonymous with algorithm. (PGE actually stood for Product Generation
Executive).

13.3.2 The Stringmaker Algorithm Configuration File

The production rules illustrated above and many others are embodied in the Select Data
configuration file. Once Select Data configuration is needed or each algorithm. In fact,
the Select Data configuration file is part of the algorithm package (discussed below).
Here, we discuss this important configuration file and how to generate it.

13.3.2.1 The Algorithm Configuration File Name

As discussed in Section 10.1, the algorithm configuration file must be named:

<algorithm_name>_<profile_name>.cfg

where:

<algorithm_name> is the name of the algorithm and <profile_name> is the name of the
profile for this algorithm. Any one algorithm may have multiple profiles and therefore,
multiple algorithm configuration files each with a file name distinguished by the profile
name. The most likely reason to have multiple profiles is to maintain distinct sets of
production rules.

Example valid algorithm configuration file names are:

MoPGE02_nominal.cfg
AiL2_reproc.cfg

13.3.2.2 Algorithm Configuration File Content

Section 10 has a full description of the parameters that go into an algorithm configuration
file. The format of the algorithm configuration file is the same as all Stringmaker
configuration files, namely Perl syntax.

7/7/2005 72

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

It is always wise to verify algorithm configuration file syntax by running it through the
Perl compiler:

perl –c <algorithm>_<profile>.cfg

The format of the Select Data configuration file is parameter = value. Some parameters
are mandatory while others are optional and may be used only when needed by the
algorithm.

13.3.3 Algorithm Configuration File Autopsy

In this section, we will discuss in detail an example algorithm configuration file. The file
may be seen in Appendix A. Note that the line numbers at the beginning of each line are
not part of the file, but only serve in the discussion that follows.

13.3.3.1 General Points

The algorithm configuration file is in Perl syntax. It is, in fact, a compilable Perl source
file. As such, all the syntax rules that apply to Perl apply here as well. Although this Perl
“code” is basically a list of parameter (or Perl variable) definitions, it does open up the
possibility to add complex Perl code to this file. This will not, however, be discussed
here.

Also note that typically, the order of parameters is not important. Thus, the
$algorithm_name and $algorithm_version parameters can be set at the bottom of the file
although, for the sake of maintainers, this may not be the wisest choice.

13.3.3.2 Line By Line Dissection

Line Numbers Discussion
1-3 In lines 1-3, the algorithm name, version, and the name of the

executable to run are set. Note that S4PM assumes that the
executable has the correct permissions to be executed by the S4PM
user.

4 The processing period is set to 300 seconds. This means that the
algorithm will be processing 300 seconds of input. Typically, this
means that the output corresponds to the same 300-second time
span, although this doesn’t have to be the case.

5-6 The $pre_processing_offset and $post_processing_offset are both
set to 0. These parameters could have instead been left out of the
file altogether and have the same effect.

Because both are zero, this means that the processing period (which
is 300 seconds) is aligned to the beginning of the timer period

7/7/2005 73

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

Line Numbers Discussion
represented in the trigger input data. In other words, the processing
period is contemporaneous with the trigger input data.

7 The $metadata_from_metfile being set to zero means that the
metadata are read from the HDF file rather than from the
accompanying metadata file. As with lines 5-6, this line could have
been left out since the default for this parameter is zero.

8 The $apply_leapsec_correction being set to zero means that no such
correction will be done; this is not an AIRS algorithm. The line
could have been left out altogether.

9 The $pcf_path is set to the relative full pathname of the Process
Control File (PCF) template for this algorithm. It will be from this
template that the runtime PCF will be generated.

The advantage of a relative path rather than an absolute one is that
this configuration file is portable to any S4PM string whereas an
absolute path may need to be changed when changing strings.

10 The $product_coverage is set to 300 seconds. This means that all
products from this algorithm are assumed to be 300 seconds long.

14 Since $make_ph is set to non-zero (1 in this case), a Production
History (PH) tar file will be generated when this algorithm
completes successfully.

Whether or not the PH get exported is dependent upon the
$export_ph parameter in the Stringmaker string configuration file.

If PH files are not exported, they will remain on disk in the PH disk
pool until they are deleted by a job running in the Repeat Daily
station after four days (4 is hardwired in the Stringmaker derived
configuration file).

16 Since $run_easy is set to zero, the Run Easy algorithm wrapper will
not be invoked.

18-59 Lines 18-59 are where the input files for this algorithm are
described.

19-28 This section describes the data type MOD03, version 005. Note that
since the need is set to ‘TRIG’, this data type is designated the
trigger data type. Thus, it is the arrival of a file of MOD03 version
005 that triggers S4PM into action by setting up a job to determine
what other data are needed by a run using this file as input and then
to begin looking for those data.

The coverage attribute is 300 seconds, equal to the processing
period set earlier. The boundary is set to START_OF_DAY. S4PM
will thus assume, when determining what other data are needed for
this algorithm, that MOD03 aligned to the beginning of the data.
Since MOD03 are only 300 seconds long, a boundary of

7/7/2005 74

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

Line Numbers Discussion
START_OF_HOUR would have achieved equal results.

29-38 This section describes MOD01 version 005. Since the need is set to
‘REQ’, we know that this input is required. S4PM will not allow
this job to run unless this data is available.

We also note that the currency is set to ‘CURR’. This means that
the MOD01 is aligned exactly with the MOD03; what is “current”
is dictated by the trigger input.

39-58 These sections describe two optional inputs. They are both MOD01,
version 005. The distinction between these MOD01 files and the
one described in lines 29-38 is that (1) they are for the previous and
following files, and (2) both are optional.

The currency setting of ‘PREV1’ means that the MOD01 is
previous by one step to the current and “current” is defined by the
time of the trigger input. So for example, if the trigger MOD03 was
for 10:00-10:05, a ‘PREV1’ means times 09:55-10:00.

If the need had been set to ‘PREV2’, it would have meant times
09:50-09:55, ‘PREV3’ would have meant 09:45-09:50, etc.

Likewise, the second MOD01 has a currency of ‘FOLL1’ meaning
a MOD01 from the time period immediately after the current. If
current was 10:00-10:05, then ‘FOLL1’ means 10:05-10:10.

Since the need attribute for both files is set to ‘OPT1’, we know
these files are optional. Use them if they are available. How long
does S4PM wait before processing without them? That is set by the
timer attribute which we see is 7200 seconds for both. S4PM will
wait for up to two hours for these optional inputs to arrive before
giving up on them and running the algorithm without.

Note that each of these two inputs has a different LUN (see the lun
attribute). It is only because of this that we can ascribe different
rules for each such as the currency.

61-85 These lines describe the outputs from this algorithm. Note that all
possible outputs need to be listed here even if they are not always
produced.

113-125 In these lines the input and output uses are set. All input and output
data types need to be listed in these hashes.

To determine the number of input uses for each data type, you need
to ask ‘What is the maximum number of times a data file of this
data type will be accessed (read) by this algorithm?’

7/7/2005 75

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

Line Numbers Discussion
NOTE: You are not asking how many times a single run of this
algorithm will access the data (since the answer to this is almost
always one), but how many times will runs of this algorithm access
the data.

For example, for a two-hour input file, you may have an algorithm
that processes only 15 minutes of it at a time. Thus, to process the
entire tow-hour file, the algorithm will have to run 8 times. Thus,
the number of uses for this input is 8 since data needs to be read by
runs of this algorithm 8 times before it has “used” it up.

Do not concern yourself with what other algorithms may read or
access the same input. S4PM will tally the total number of uses on
any data type for you automatically.

For outputs, the number of uses is almost always one (the export of
a data file is considered a use of it).

127-130 In these lines, the @stats_datatypes and $stats_index_datatype
parameters are set. In the former, you might notice that not all
output data types are listed, namely the MOD021QA. This is
because this QA output is not considered “important” and therefore,
no performance statistics need be generated on it.

The $stats_index_datatype is set to MOD021KM. This is because
only the MOD021KM happens to be made in all runs. It turns out
that the MOD02HKM and MOD02QKM are not always produced.
So, they would have been a poor choice for the index data type.

Table 13-1. A line-by-line discussion of the algorithm configuration file shown in

Appendix A.

13.4 Process Control Files

This section discusses Process Control Files or PCFs. These files are part of the algorithm
package and have been mentioned earlier.

13.4.1 The Process Control File

S4PM generates a runtime Process Control File (PCF) for each run of every algorithm.
The PCF is an ASCII text file that maps physical files and directories to logical unit
numbers (LUNs). S4PM assigns input and output file names and directories for each run
of an algorithm. The only way to have an algorithm access these dynamically generated
names in a consistent way is to via the PCF. With a PCF, the algorithm accesses the LUN

7/7/2005 76

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

and uses that LUN to determine the current value of the file name and directory location.
In addition to mapping files to LUNs, the PCF can also map parameters to LUNs. In the
ECS world, these so-called user-defined parameters can be used to pass various values
(numeric, character, etc.) to the running algorithm; they function very much like
command line arguments.

The PCF format is based on that used with the ECS Toolkit, but simplified greatly.

For algorithms that do not use the ECS Toolkit (and the API for handling PCFs), S4PM
provides tools to shield the algorithm from having to deal with them. Bear in mind,
however, that PCFs are still used in the background by S4PM.

13.4.2 The Process Control File Template

As mentioned above, S4PM generates a new PCF for each algorithm run. What changes
in the runtime PCF from run to run are the specific file names. In addition, because some
input files may be optional, PCFs may also differ from run to run as far as what files they
contain. For example, in one run, optional data may be left out because it did not arrive
soon enough.

The PCF template is the template that S4PM uses to generate dynamic runtime PCFs.
The PCF template is part of the algorithm package. Since S4PM uses the PCF template to
generate a runtime PCF, the PCF template needs to contain all possible input files and all
possible output files, both optional and required. In any one algorithm run, only those
inputs actually found will end up in the runtime PCF. If an algorithm has no optional
inputs or outputs, then the PCF template will look like the runtime PCF.

The file name for a PCF template in the algorithm package is unrestricted. The algorithm
configuration file $pcf_path must be set to the relative or absolute pathname of the PCF
template (see Section 10.1.1.8).

Appendix B contains an example PCF template corresponding to the algorithm
configuration file in Appendix A.

Several points can be illustrated by the PCF template in Appendix B:

1. All sections of the PCF must be present, even if they contain no entries. These
required sections are:

a. PRODUCT INPUT FILES
b. PRODUCT OUTPUT FILES
c. SUPPORT INPUT FILES
d. SUPPORT OUTPUT FILES
e. USER DEFINED RUNTIME PARAMETERS
f. INTERMEDIATE INPUT
g. INTERMEDIATE OUTPUT
h. TEMPORARY I/O

7/7/2005 77

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

i. END
2. Syntax must be followed. Section names must be in all uppercase and lines

containing section names must begin with a ? character in the first column. See
lines 2, 29, 39, 42, 48, 70, 73, and 76.

3. Section names must then be followed by a line with a ! in the first column
(comment lines may be inserted in between) followed by a default directory
name. In S4PM, the output directory must be set to ./ meaning the current
directory. See lines 30, 43, and 77.

4. There can be NO blank lines in a PCF or PCF template. A line must either be a
PCF entry or a comment line beginning with the # character (even if there is no
comment afterward). See lines 1, 25, and 28 for example.

5. For static input files (e.g. lookup tables), the PCF entry in the template must be
the actual file name and directory. Directories should be relative as shown in lines
5 through 7. Remember that static files are not seen by S4PM.

6. For dynamic input, the only important part of the entry is the LUN. The file name
that you place in the PCF (and there needs to be something there) is arbitrary and
only serves the human reader of the document. See lines 9 through 13.

7. Metadata configuration files (MCFs), if your algorithm uses them, are like static
input files. The file names and directory locations need to be real. See lines 18
through 23.

8. Static parameters that need to be passed to the algorithm can be set in the USER
DEFINED RUNTIME PARAMETERS section as in lines 49 through 68.
Remember though, these are static. They will not change from one run to the next.
(The Modify PCF Parameters Tool does allow operators to change these
parameters, but it is not meant to be applied on a run-by-run basis.)

9. The last line must be END. See line 79.

For more information on PCF syntax, refer to the ECS Toolkit User’s Guide.

13.5 Preparing an Algorithm Package for S4PM

An algorithm package in S4PM consists of the following components:

7/7/2005 78

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

Component Description Required?

Executable
binaries and scripts

Algorithm code can be any combination of
compiled or script binaries. Permissions must be
properly set so that they can be executed on the
host machine by the S4PM user.

One binary (compiled or script) must be designated
as the main program. It will be this program that
S4PM will execute. The main program may then
execute other compiled or script binaries as needed.
The main program, however, must assume that
these other binaries are in the current working
directory.

Required

Algorithm
Configuration File

There must be at lest one algorithm configuration
file as described in Section 10.

Required

PCF Template There must be exactly one Process Control File
template.

Required

Static Input Files Static inputs (lookup tables, flat file databases, etc.)
are packaged with the algorithm. Static input are
not described by the algorithm configuration file,
but their locations must be hardwired in the PCF
template. Unlike with dynamic input, static input
files are not “seen” by S4PM.

It may be convenient to place static input in a
subdirectory (say, named ‘static’).

Optional

Metadata
Configuration
Files

Metadata configuration files or MCFs are needed
by algorithms that use the ECS Toolkit. If included,
the location of MCFs needs to be hardwired in the
PCF template (as with other static input).

Optional

Other Files Algorithm packages may include any other files to
support policies at your site. For example,
README files, output from software builds, or
other documentation.

Optional

Table 13-2. Required and optional components of the algorithm package in S4PM.

Typically, the components comprising an algorithm package are placed into one or more
tar or zip files.

13.6 Installing Algorithm Packages

Algorithm package installation into S4PM is a two-step process. The first step is to
simply install the algorithm package into the disk location where S4PM is configured to

7/7/2005 79

S4PM 5.7.0 Installation and Configuration Guide: 13. Working With Algorithms

look. The second step is to configure S4PM to incorporate the algorithm into its
processing.

13.6.1 Installation

Algorithm packages must be installed under the algorithm root directory defined by the
$algorithm_root parameter in the Stringmaker string configuration file as described in
Section 9.7 or in the default location: $s4pm_root/$data_source/pge where $s4pm_root
and $data_source are parameters also set in the Stringmaker string configuration file.

Below the algorithm root directory, S4PM assumes there is a subdirectory for each
algorithm with the name of the algorithm (matching the $algorithm_name parameter in
the algorithm configuration file). Then below this directory, S4PM assumes that there is a
subdirectory named for the algorithm version (matching the $algorithm_version
parameter in the algorithm configuration file).

For example, algorithm AiL1A_AIRS, version 2.3.4 is assumed to reside in:

$algorithm_root/AiL1A_AIRS/2.3.4/

→ NOTE: S4PM does not “see” an algorithm until it has been
configured to do so. Therefore, you can safely install (place on disk) any
number of algorithms or algorithm versions without affecting current
processing.

13.6.2 Configuring S4PM For An Algorithm

See Sections 4.3.10 and 4.3.11 for how to run Stringmaker.

7/7/2005 80

S4PM 5.7.0 Installation and Configuration Guide: Appendix A

Appendix A. Sample Stringmaker Algorithm
Configuration File

The following lines form an example Stringmaker algorithm configuration file, in this
case, for MoPGE02. Note that the line numbers shown in the first column are not part of
the configuration file, but are used only to discuss this file in Section 13.

 1 $algorithm_name = 'MoPGE02';
 2 $algorithm_version = '5.0.6';
 3 $algorithm_exec = 'PGE02.csh';
 4 $processing_period = 300;
 5 $pre_processing_offset = 0;
 6 $post_processing_offset = 0;
 7 $metadata_from_metfile = 0;
 8 $apply_leapsec_correction = 0;
 9 $pcf_path = '../MoPGE02/5.0.6/GDAAC.PGE02.pcf.tpl';
 10 $product_coverage = 300;
 11
 12
 13 # CHANGE THE SETTING BELOW IF YOU WANT PH FILES MADE
 14 $make_ph = 1;
 15
 16 $run_easy = 0;
 17
 18 %inputs = (
 19 'input1' => {
 20 'data_type' => 'MOD03',
 21 'data_version' => '005',
 22 'need' => 'TRIG',
 23 'lun' => '600000',
 24 'timer' => 7200,
 25 'currency' => 'CURR',
 26 'coverage' => 300,
 27 'boundary' => 'START_OF_DAY',
 28 },
 29 'input2' => {
 30 'data_type' => 'MOD01',
 31 'data_version' => '005',
 32 'need' => 'REQ',
 33 'lun' => '500000',
 34 'timer' => 7200,
 35 'currency' => 'CURR',
 36 'coverage' => 300,
 37 'boundary' => 'START_OF_DAY',
 38 },
 39 'input3' => {
 40 'data_type' => 'MOD01',
 41 'data_version' => '005',
 42 'need' => 'OPT1',

7/7/2005 81

S4PM 5.7.0 Installation and Configuration Guide: Appendix A

 43 'lun' => '500001',
 44 'timer' => 7200,
 45 'currency' => 'PREV1',
 46 'coverage' => 300,
 47 'boundary' => 'START_OF_DAY',
 48 },
 49 'input4' => {
 50 'data_type' => 'MOD01',
 51 'data_version' => '005',
 52 'need' => 'OPT1',
 53 'lun' => '500002',
 54 'timer' => 7200,
 55 'currency' => 'FOLL1',
 56 'coverage' => 300,
 57 'boundary' => 'START_OF_DAY',
 58 },
 59);
 60
 61 %outputs = (
 62 'output1' => {
 63 'data_type' => 'MOD021KM',
 64 'data_version' => '005',
 65 'lun' => '700002',
 66 'currency' => 'CURR',
 67 'coverage' => 300,
 68 'boundary' => 'START_OF_DAY',
 69 },
 70 'output2' => {
 71 'data_type' => 'MOD02QKM',
 72 'data_version' => '005',
 73 'lun' => '700000',
 74 'currency' => 'CURR',
 75 'coverage' => 300,
 76 'boundary' => 'START_OF_DAY',
 77 },
 78 'output3' => {
 79 'data_type' => 'MOD02OBC',
 80 'data_version' => '005',
 81 'lun' => '700010',
 82 'currency' => 'CURR',
 83 'coverage' => 300,
 84 'boundary' => 'START_OF_DAY',
 85 },
 86
 87 'output4' => {
 88 'data_type' => 'MOD021QA',
 89 'data_version' => '005',
 90 'lun' => '700100',
 91 'currency' => 'CURR',
 92 'coverage' => 300,
 93 'boundary' => 'START_OF_DAY',
 94 },
 95 'output5' => {
 96 'data_type' => 'MOD02HKM',

7/7/2005 82

S4PM 5.7.0 Installation and Configuration Guide: Appendix A

 97 'data_version' => '005',
 98 'lun' => '700001',
 99 'currency' => 'CURR',
100 'coverage' => 300,
101 'boundary' => 'START_OF_DAY',
102 },
103 'output6' => {
104 'data_type' => 'Browse',
105 'data_version' => '001',
106 'lun' => '99201',
107 'currency' => 'CURR',
108 'coverage' => 300,
109 'boundary' => 'START_OF_DAY',
110 },
111);
112
113 %input_uses = (
114 'MOD01' => 3,
115 'MOD03' => 1,
116);
117
118 %output_uses = (
119 'MOD02HKM' => 1,
120 'MOD02QKM' => 1,
121 'MOD021KM' => 1,
122 'Browse' => 1,
123 'MOD021QA' => 1,
124 'MOD02OBC' => 1,
125);
126
127 @stats_datatypes = ('MOD021KM','MOD02QKM',
128 'MOD02OBC', 'MOD02HKM', 'Browse',);
129
130 $stats_index_datatype = 'MOD021KM';
131
132 1;

7/7/2005 83

S4PM 5.7.0 Installation and Configuration Guide: Appendix A

Appendix B. Sample Process Control File

The following is the Process Control File for the same algorithm described in the
algorithm configuration file of Appendix A. Note that the line numbers shown in the first
column are not part of the configuration file, but are used only to discuss this file in
Section 13.

 1 #
 2 ? PRODUCT INPUT FILES
 3 ! ~/runtime
 4 # Static Input Lookup Tables
 5
700050|MOD02_Reflective_LUTs.hdf|../MoPGE02/5.0.6/pge/static
||||1
 6
700060|MOD02_Emissive_LUTs.hdf|../MoPGE02/5.0.6/pge/static||
||1
 7
700070|MOD02_QA_LUTs.hdf|../MoPGE02/5.0.6/pge/static||||1
 8 # Geolocation
 9
600000|MOD03.A2003186.0125.004.2003186082217.hdf|||||1
 10 # L1A input files below (Also see
70020,700223,700222,201001)
 11 500000|MOD01.A2003186.0120.004.2003186081241.hdf|||||1
 12 500001|MOD01.A2003186.0125.004.2003186081527.hdf|||||1
 13 500002|MOD01.A2003186.0130.004.2003186081714.hdf|||||1
 14 #---

 15 10252|GetAttr.temp|./||||1
 16 10254|MCFWrite.temp|./||||1
 17 # MCFs
 18
700250|MOD02QKM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 19
700251|MOD02HKM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 20
700252|MOD021KM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 21
700253|MOD02OBC#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 22
700350|MOD021QA#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 23 10250|Browse#001.MCF|../MoPGE02/5.0.6/pge/static||||1
 24 # --

 25 #
 26 10501|INSERT_EPHEMERIS_FILES_HERE|||||1
 27 10502|INSERT_ATTITUDE_FILES_HERE|||||1
 28 #
 29 ? PRODUCT OUTPUT FILES
 30 ! ./

7/7/2005 84

S4PM 5.7.0 Installation and Configuration Guide: Appendix A

 31 700000|MOD02QKM.hdf|||||1
 32 700001|MOD02HKM.hdf|||||1
 33 700002|MOD021KM.hdf|||||1
 34 700010|MOD02OBC.hdf|||||1
 35 700100|MOD021QA.hdf|||||1
 36 # MOD_PR02BR (Browse) Output File:
 37 99201|Browse.Terra.Af5.3_6||| ||1
 38 #
 39 ? SUPPORT INPUT FILES
 40 ! ~/runtime
 41 #
 42 ? SUPPORT OUTPUT FILES
 43 ! ./
 44 10100|LogStatus|||||1
 45 10101|LogReport|||||1
 46 10102|LogUser|||||1
 47 #
 48 ? USER DEFINED RUNTIME PARAMETERS
 49 700200|ECS METADATA|700100:1
 50 700201|ECS METADATA|700101:1
51 700202|ECS METADATA:700101:1
 52 800500|PGE02 Version|5.0.6
 53 800550|Processing Environment|IRIX64
 54 800510|Satellite; AM1M=Terra, PM1M=Aqua|AM1M
 55 800600|ReprocessingPlanned|further update is
anticipated
 56 800605|ReprocessingActual|processed once
 57 800610|MCSTLUTVersion|5.0.6.4_Terra
 58 800615|Write_Night_Mode_HiRes_Data|0
 59 800620|ProcessingCenter|GSFC
 60 # MOD_PR02BR (Browse) parameters:
 61 # Number of Input bands
 62 99401|band1|1
 63 99402|band2|4
 64 99403|band3|3
 65 99406|browse_product_shutdown|0
 66 # ShortName & VersionID are used in MCF
 67 99505|SHORTNAME|"DFLAXDUMMY"
 68 99506|VERSIONID|"V01"
 69 #
 70 ? INTERMEDIATE INPUT
 71 ! ~/runtime
 72 #
 73 ? INTERMEDIATE OUTPUT
 74 ~/runtime
 75 #
 76 ? TEMPORARY I/O
 77 ! ./
 78 #
 79 ? END

7/7/2005 85

