

HIRDLS SW-HIR-2007

Originator:

Charles Cavanaugh Date: 10 Dec. 2012

Subject/Title: The Design of the HIRDLS
Level 1 Correction Processor

Description/Summary/Contents:

The purpose of this document is to create a design specification for the High Resolution Dynamics Limb Sounder
(HIRDLS) Level 1 Correction Processor, hereby known as L1C Processor. This design specification will extend the
architecture of L1C Processor at a level of detail sufficient to facilitate implementation. It is assumed that the reader
of this document has already read and understood the documented architectural plan of L1C Processor.

Keywords:

Purpose of this Document:

Oxford University
Atmospheric, Oceanic &
Planetary Physics
Parks Road
OXFORD OXI 3PU
United Kingdom

University of Colorado, Boulder
Center for Limb Atmospheric Sounding
3450 Mitchell Lane, Bldg. FL-0
Boulder, CO 80301
 EOS

The Design of the
HIRDLS Level 1 Correction Processor

Charles Cavanaugh

 i

Table of Contents

Table of Contentsi
List of Figuresiii
List of Abstractionsiv

Section 1 Document Purpose and Goal1
Section 2 Design Notation and Goal1
Section 3 Design Considerations1
Section 3.1 Favor Stack Memory1
Section 3.2 Recover From Failure1
Section 3.3 Reduce Memory Scope2
Section 3.4 Force Safe Passing2
Section 4 Design Representations2
Section 4.1 Packages2
Section 4.2 Abstractions2
Section 4.3 Dependencies3
Section 4.4 Collaborations3
Section 4.5 Responsibilities4
Section 4.6 Contracts4
Section 5 Design Methodology4
Section 6 Package Enumeration5
Section 7 Diagnostics Package5
Section 7.1 System Reporter Abstraction5
Section 7.2 Diagnostic Manager Abstraction6
Section 7.3 Diagnostic Data Abstraction6
Section 7.4 Termination Manager Abstraction6
Section 7.5 Termination Data Abstraction7
Section 8 Service Package7
Section 8.1 Constants Service Abstraction7
Section 8.2 HDF5 Service Abstraction8
Section 8.3 Missing Value Service Abstraction8
Section 8.4 Program Abortion Service Abstraction9
Section 8.5 PCF Service Abstraction9
Section 8.6 Metadata Service Abstraction10
Section 9 File Package10
Section 9.1 Processor File Abstraction10
Section 9.2 ASCII File Abstraction11
Section 9.3 HDF5 File Abstraction11
Section 10 HIRDLS1C Package11
Section 10.1 HIRDLS1C Manager Abstraction12
Section 10.2 HIRDLS1C File Abstraction13
Section 10.3 Scan Discriminator Abstraction13
Section 10.4 Discriminator Data Abstraction13
Section 10.5 HIRDLS1C Scan Abstraction14
Section 11 Oscillation Corrector Package14

 ii

Table of Contents (continued)

Section 11.1 Wave Corrector Abstraction15
Section 11.2 Remover Creator Abstraction15
Section 11.3 STXX Wave Remover Abstraction15
Section 11.4 ST00 Wave Remover Abstraction16
Section 11.5 EOF File Abstraction16
Section 11.6 EOF Data Abstraction16
Section 12 Kapton Corrector Package17
Section 12.1 Kapton Corrector Abstraction17
Section 12.2 Elevations File Abstraction18
Section 12.3 Elevations Data Abstraction19
Section 12.4 Translations File Abstraction19
Section 12.5 Translations Data Abstraction19
Section 12.6 SpinUp Data Creator Abstraction19
Section 12.7 SpinUp Data Abstraction20
Section 12.8 Correction Data Loader Abstraction20
Section 12.9 Correction File Abstraction20
Section 12.10 Correction Data Abstraction21
Section 13 Obscuration Corrector Package21
Section 13.1 Obscuration Corrector Abstraction21
Section 13.2 Obscuration File Abstraction22
Section 13.3 Obscuration Data Abstraction22
Section 14 Error Corrector Package22
Section 14.1 Error Corrector Abstraction23
Section 14.2 Error File Abstraction23
Section 14.3 Error Data Abstraction24
Section 15 Processor Package24
Section 15.1 L1C Processor Abstraction25

Appendix A Abstraction InterfacesA-1

 iii

List of Figures

Figure 1 L1C Processor Hierarchy of Packages3
Figure 2 Diagnostics Package Hierarchy5
Figure 3 System Reporter Abstraction6
Figure 4 Diagnostic Manager and Diagnostic Data Abstractions6
Figure 5 Termination Manager and Termination Data Abstractions7
Figure 6 Service Package Hierarchy7
Figure 7 Constants Service Abstraction8
Figure 8 HDF5 Service Abstraction8
Figure 9 Missing Value Service Abstraction9
Figure 10 Program Abortion Service Abstraction9
Figure 11 PCF Service Abstraction9
Figure 12 Metadata Service Abstraction10
Figure 13 File Package Hierarchy10
Figure 14 Processor File Abstraction11
Figure 15 ASCII File Abstraction11
Figure 16 HDF5 File Abstraction12
Figure 17 HIRDLS1C Package Hierarchy12
Figure 18 HIRDLS1C Manager Abstraction12
Figure 19 HIRDLS1C File Abstraction13
Figure 20 Scan Discriminator and Discriminator Data Abstractions13
Figure 21 HIRDLS1C Scan Abstraction14
Figure 22 Oscillation Corrector Package Hierarchy14
Figure 23 Wave Corrector Abstraction15
Figure 24 Remover Creator Abstraction15
Figure 25 STXX Wave Remover and ST00 Wave Remover Abstractions . . .16
Figure 26 EOF File and EOF Data Abstractions17
Figure 27 Kapton Corrector Package Hierarchy17
Figure 28 Kapton Corrector Abstraction18
Figure 29 Elevations File and Elevations Data Abstractions18
Figure 30 Translations File and Translations Data Abstractions19
Figure 31 SpinUp Data Creator and SpinUp Data Abstractions20
Figure 32 Correction Data Loader Abstraction20
Figure 33 Correction File and Correction Data Abstractions21
Figure 34 Oscillation Corrector Package Hierarchy21
Figure 35 Obscuration Corrector Abstraction22
Figure 36 Obscuration File and Obscuration Data Abstractions22
Figure 37 Error Corrector Package Hierarchy23
Figure 38 Error Corrector Abstraction23
Figure 39 Error File and Error Data Abstractions24
Figure 40 L1C Processor Abstraction24

 iv

List of Abstractions

ASCII File11 . .A-3
Constants Service8 . .A-2
Correction Data21 . .A-7
Correction Data Loader20 . .A-7
Correction File21 . .A-7
Diagnostic Data6 . .A-1
Diagnostic Manager6 . .A-1
Discriminator Data13 . .A-4
Elevations Data18 . .A-6
Elevations File18 . .A-6
EOF Data17 . .A-5
EOF File17 . .A-5
Error Corrector23 . .A-8
Error Data24 . .A-9
Error File24 . .A-8
HDF5 File12 . .A-3
HDF5 Service8 . .A-2
HIRDLS1C File13 . .A-4
HIRDLS1C Manager12 . .A-4
HIRDLS1C Scan14 . .A-4
Kapton Corrector18 . .A-6
L1C Processor24 . .A-9
Metadata Service10 . .A-3
Missing Value Service9 . .A-2
Obscuration Corrector 22 . .A-8
Obscuration Data22 . .A-8
Obscuration File22 . .A-8
PCF Service9 . .A-2
Processor File11 . .A-3
Program Abortion Service9 . .A-2
Remover Creator15 . .A-5
Scan Discriminator13 . .A-4
SpinUp Data20 . .A-7
SpinUp Data Creator20 . .A-7
ST00 Wave Remover16 . .A-5
STXX Wave Remover16 . .A-5
System Reporter6 . .A-1
Termination Data7 . .A-1
Termination Manager7 . .A-1
Translations Data19 . .A-6
Translations File19 . .A-6
Wave Corrector15 . .A-5

 1

1 Document Purpose and Goal

The purpose of this document is to create a design specification for the High Resolution Dynamics Limb Sounder (HIRDLS)
Level 1 Correction Processor, hereby known as L1C Processor. This design specification will extend the architecture of L1C
Processor at a level of detail sufficient to facilitate implementation. It is assumed that the reader of this document has already
read and understood the documented architectural plan of L1C Processor.

The goal of this document is to create a design that correctly models the overviewed task, and lays out a plan that distributes
system intelligence as evenly as possible, is easy to understand and implement, and easy to extend or revise, if or when
necessary in the future.

2 Design Notation and Goal

The notation used in this document will be the Unified Modeling Language (UML). However, the method used to specify
each abstraction will be based on the work of Ward Cunningham and Kent Beck, and detailed in Designing Object-Oriented
Software (Wirfs-Brock, et.al, 1990). This method places a high degree of importance on finding each abstraction’s
responsibilities and collaborations. C++ syntax will be used to specify detailed abstraction information (such as public
contract interface). The goal of the design is to create the simplest system to correctly accomplish the task. Though effort
will be made to make abstractions reusable throughout the system, no effort will be made to make abstractions reusable
outside of the system, i.e. no functionality or data will exist that is not used by the system, unless that functionality makes for
a more extensible system.

3 Design Considerations

As first mentioned in the L1C Processor Requirements document, L1C Processor is a stand-alone, non-graphical, non-
embedded scientific application, and as such, resource usage has become a primary design consideration. Through
negotiations with the HIRDLS Program Manager and HIRDLS Data Manager, available data storage size is not a concern.
Application memory size, though, is a concern, and efficient usage of memory must be planned. The L1C Processor memory
management plan is twofold: 1) create a design that minimizes memory complexity; and 2) utilize tools during
implementation to help find memory use flaws. The latter part of the plan is beyond the scope of this document. The former
part has four approaches: 1) favor stack memory over heap memory; 2) implement allocation failure recovery; 3) reduce the
scope of heap allocated memory; and 4) force safe memory parameter passing. Though the last three approaches are more
implementation issues than design issues, all four approaches are addressed further in this section.

3.1 Favor Stack Memory

Data created with stack memory has the benefit of being unwound when the data’s scope is terminated. Heap memory
persists until explicitly terminated, and is therefore highly prone to leaking. If an abstraction is needed within a method,
prefer to allocate it on the stack. If the method is called many, many times, consider having the needed abstraction as a
private data member of the employing abstraction.

3.2 Recover From Failure

Stack memory use, though favored over heap memory use, will not be exclusive to a system with the size and complexity of
the HIRDLS L1C Processor. Every time an attempt is made to allocate heap memory, the status of the allocation must be
checked before using the memory. If there was a failure, the system should recover in a consistent and graceful way.
Immediately conveying failure information to the system user and exiting from the system is acceptable, and preferred.

 2

3.3 Reduce Memory Scope

Again, there will be times when using heap memory is unavoidable (as when creating a vector of abstractions – vectorizing
the address of the abstraction is much more efficient than vectorizing the entire abstraction). The scope of the accessibility of
the memory must be reduced to its lowest practical point, but never higher than abstraction-wide scope. That is, the most
preferred way to use heap memory is to allocate it, use it and destroy it within the same abstraction method. When it is not
possible to destroy it within the same method as allocated (as with the example above), the memory must be destroyed in
another method of the same abstraction.

3.4 Force Safe Passing

This aspect of the plan disallows destruction of memory passed into a method via the parameter list. If it is necessary to pass
allocated memory to a method via the parameter list, that memory must still exist in its original form when the method
terminates. The memory passed in is owned by another method, and it is incumbent on the owning method to destroy the
memory, and any changes to the memory, or aggregation of the memory, is disallowed by the called method. If the language
supports compile-time checking (such as forcing constant pointers), this must be used to verify the safeness of parameter
memory.

4 Design Representations

The L1C Processor Architecture document introduced various packages from which L1C Processor will be built. Those
packages will be enumerated in more detail in this document. Included in the detail will be the various abstractions that make
up a given package. As mentioned in Section 2, UML notation will be used to show a package’s internal mechanisms,
including abstractions, dependencies, collaborations, responsibilities and contracts.

4.1 Packages

The packages that comprise L1C Processor are logical encapsulations of a collection of abstractions that are homogeneous in
purpose, with that purpose reflected in the package name. Packages are the building blocks for a system, and are the “whats”
in that system. Figure 1 shows the hierarchy of the L1C Processor packages introduced in the L1C Processor Architecture
document (though the names have been altered to fit this document’s notation that packages have a singular name). The goal
of that document was to identify the “whats” or packages necessary to fulfill the requirements of L1C Processor. The goal of
this document is to identify the “hows” of each package. The Diagnostics package is at the lowest level, and is accessible to
all other packages. The Service package, which is to present to L1C Processor packages a simplified front-end to SDP
Toolkit, is a level higher than Diagnostics (which means Service can use Diagnostics), and is accessible to all other packages.
The File package is introduced here, and its purpose is to provide a building block for file input/output. The other packages
shown in Figure 1 have only explicit accessibility to those packages to which each package’s emanating arrows point.

4.2 Abstractions

Three different types of abstractions are used in L1C Processor: process, control and data. Where packages are homogeneous
in purpose, process abstractions are homogeneous in action, control abstractions are homogeneous in idea, and data
abstractions are homogeneous in content. Process abstractions are about action, so they have “actiony” names, such as Scan
Transformer or File Writer. Control abstractions are about idea, so they have “ideay” names, such as PCF Service or
HIRDLS1C File. Data abstractions are about content, so they have “contenty” names, such as HIRDLS1 Scan or Diagnostic
Data. All abstractions, regardless of type, are to fully encapsulate all functionality needed to accomplish their specified task,
and to present to L1C Processor the simplest interface possible. Fully encapsulate does not mean an abstraction must be
totally self-contained and needing no other abstractions. Fully encapsulate means that no other abstraction need know how it
does its job, only that it does its job.

 3

4.3 Dependencies

A package is dependent on another package when, obviously, the employing package needs something from the employed
package. The exception to this is when two packages communicate via a data abstraction, which then makes the two
packages dependent on the data abstraction. Because this approach minimizes inter-package dependencies within the system,
or at the very least localizes the dependencies, communicating via data abstractions is the preferred way to handle inter-
package dependencies in L1C Processor. This is in agreement with the desire for low coupling in a system1. In a complex
system, unplanned dependencies can get circular and unmaintainable, and one of the goals of L1C Processor is to maximize
maintainability. The L1C Processor Architecture document shows that packages communicate with each other via data
aggregations, and therefore L1C Processor packages can be independently implemented and tested, making the system less
circular and more maintainable. In the case(s) where a package encapsulates other packages, inter-package dependencies
cannot be eliminated, but can be minimized by planning no inter-package dependencies amongst the encapsulated packages.
In this document, abstraction dependency and hierarchy figures are interchangeable (similar to the packages in Figure 1).

4.4 Collaborations

Identifying and planning inter-package and inter-abstraction collaborations is one of the two important tasks for this L1C
Processor Design document (responsibility is the other important task, and that will be detailed in Section 4.5). Section 4.3
has already begun the discussion on collaborations, because collaborations, in the package or abstraction sense, are one-way
streets and, therefore, dependencies arise. In the world of human interaction, two-way collaborations are considered
desirable, but in the logical, computer world, two-way collaborations are impossible, as you must first define a “thing”
(package, abstraction, data, etc.) before some other “thing” can make use of it. Collaboration figures will be used by this

1 W. Stevens, G. Myers, L. Constantine, "Structured Design", IBM Systems Journal, 13 (2), 115-139, 1974.

Figure 1 L1C Processor Hierarchy of Packages

File

Diagnostics

HIRDLS1C

Service

Oscillation
Corrector

Processor

Kapton
Corrector

Obscuration
Corrector

Error
Corrector

 4

document to show how abstractions interact to accomplish their respective tasks. These figures will employ UML notation to
show aggregation, inheritance and simple collaboration (dependency without encapsulation).

4.5 Responsibilities

As first mentioned in Sections 2 and 4.4, identifying a package or abstraction’s responsibilities is one of the two
responsibilities of this document. In much the same way the members of a software team have their own responsibilities, so
too do packages and abstractions in a system. It is important to note that abstractions and packages come from
responsibilities, and not vice-versa. As software system construction starts with a Requirements document, package and
abstraction identification starts with responsibilities. The L1C Processor Requirements and Architecture documents have
already begun the process, and have identified numerous packages to carry out the system’s distributed responsibilities. This
document will extend the depth of those responsibilities and identify the abstractions that will need to be created to fulfill the
newer, and more focused, responsibilities. The responsibilities of an abstraction will be enumerated in that abstraction’s
respective section, but will not be displayed in any figure.

4.6 Contracts

Up until now, the L1C Processor documents have expounded on finding the “whats” in the system. The contracts of an
abstraction detail the “hows”. And where packages and abstractions are the nouns, contracts are the verbs. This document
will enumerate the contracts for the abstractions, in their respective sections, in L1C Processor. As mentioned in Section 4.3,
we have the goal of minimizing inter-package and inter-abstraction dependencies, and using data abstractions for
communication does that. With many abstractions, specifically the process and control abstractions, the contracts will detail
that dependency minimization. With data abstractions, however, it is often the case that this method is very inefficient, and
we would have to create a data abstraction that exists solely to update, for instance, another data abstraction. We therefore
minimize dependency on these data abstractions by creating contracts that use only language primitives. A data abstraction,
by definition, encapsulates data, not process or control, so there are no “internal workings” that we would want to hide from
the system.

Contracts have the obligation to detail how they handle failure. Most often, this will involve returning a status Boolean to
detail if they were able to successfully (true) or unsuccessfully (false) carry out their responsibilities. How to represent
success and failure is dependent on the implementation language, but must be consistent throughout the system. If the
language has a Boolean primitive, using it is preferred over the system creating its own. In cases where failure within a
contract is catastrophic to the system (e.g., a memory creation call is unsuccessful) and the system needs to abort processing,
the contract must specify that it has system abortion authorization (noted as ‘SAA’ in the contract tables, all of which are
listed in Appendix A). Contracts that do have SAA might still return status Booleans, as the contract could still fail, though
not catastrophically.

5 Design Methodology

As the L1C Processor documentation has progressed from requirements to architecture to design, we have been employing a
top-down methodology to further decompose the system. These documents have also talked about elements of L1C
Processor being “building blocks” upon which to build other elements, which is the methodology used in bottom-up
synthesis. Figure 1 shows three “building block” packages (File, Service, Diagnostic), while showing all other packages in
L1C Processor, which were derived from top-down analysis. The File and Service packages exist to reduce complexity in the
system, and are tasked to contain no more “usefulness” than is needed by L1C Processor. The Diagnostic package exists to
pass meaningful information from the system to the user, and will most likely grow or shrink long after the first production
version of L1C Processor has been delivered. Therefore, while the majority of the elements of L1C Processor are derived
using a top-down decomposition, an eye is still open to find where elemental building blocks can be best utilized.

 5

6 Package Enumeration

L1C Processor package designs will be enumerated, in bottom-up order, in the following sections. The intent of enumerating
in this order is to have a package or abstraction well understood before inserting it into the workings of other packages and/or
abstractions. The remainder of this document is left to the detail design of each previously introduced package.

7 Diagnostics Package

The Diagnostics package has the responsibility to provide the system a consistent means to report system diagnostics,
including termination information. As discussed in Section 4.1, this package is the lowest level package in the system and
does not depend on any other package. This non-dependency is a design constraint detailed in the Section 7.1. Figure 2
shows the hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

7.1 System Reporter Abstraction

System Reporter is a control abstraction, and has the responsibility to accumulate system diagnostic and termination
information, and generate a standardized summary report. To fulfill this responsibility, this abstraction collaborates with
Diagnostic Manager, Termination Manager, Diagnostic Data and Termination Data, and presents an interface of Add and
GetReporter contracts, as shown in Figure 3. The Add contracts allow the system to add diagnostic and termination
information to the report. For the manager abstractions to work correctly, System Reporter must aggregate them and keep
them persistent during its lifetime. This abstraction, in turn, must also be persistent to work correctly. This abstraction is
specified to be globally accessible and fail-safe. Fail-safe means the report must be generated, even if the process terminates
abnormally, and output to some device (file or screen), but employ no memory creation functionality or outside subsystem
dependencies. This specification also applies to the abstractions with which System Reporter aggregates. The intent of this
report is to give the operator some indication of what happened during a system run, so if this report is not generated, the run
will have failed. There must be exactly one instance of this abstraction in the system, and therefore it is specified that this
abstraction be a Singleton creational pattern2, and the GetReporter contract is to return that instance. The classic
implementation of a Singleton has the abstraction encapsulating a pointer to itself, but this breaks this abstraction’s “no
memory creation” requirement. Making the pointer a global stack pointer (guaranteed to be unwound off the stack at
program termination), rather than a heap pointer, is allowable in this one exception. The public contracts of this abstraction
must use only primitives (due to the no subsystem dependency requirement), and must not “fail” in the sense that processing
should stop. Note that there is no contract to generate the status report. The report will be generated when the abstraction is
destroyed.

2 As detailed in Design Patterns, Elements of Reusable Object-Oriented Software by Gamma, et.al., 1995

System Reporter

Diagnostic Manager Termination Manager

Diagnostic Data Termination Data

Figure 2 Diagnostics Package Hierarchy

 6

7.2 Diagnostic Manager Abstraction

Diagnostic Manager is a control abstraction, and has the responsibility to accumulate and retrieve the reported system
diagnostics. To fulfill this responsibility, this abstraction collaborates with Diagnostic Data, and presents an interface of Add
and Retrieve contracts, as shown in Figure 4. The Add contract allows System Reporter to add diagnostic information to the
report, and the Retrieve contract allows System Reporter to retrieve the added diagnostic information. Diagnostic Manager
has the same “no memory creation” requirements as System Reporter, and therefore must aggregate a constant number of
Diagnostic Data abstractions, and keep them persistent during its lifetime. This abstraction needs to be persistent to work
correctly.

7.3 Diagnostic Data Abstraction

Diagnostic Data is a data abstraction, and has the responsibility to encapsulate information specific to one system diagnostic.
To fulfill this responsibility, this abstraction presents an interface of Get, Set and Update contracts, as shown in Figure 4.
The copy constructor, assignment operator, or Set contract can be used by Diagnostic Manager to initialize the abstraction.
The Get contract returns data encapsulated by the abstraction. The Update contract updates the occurrence counter of an
initialized abstraction.

7.4 Termination Manager Abstraction

Termination Manager is a control abstraction, and has the responsibility to store and retrieve the system termination. To
fulfill this responsibility, this abstraction collaborates with Termination Data, and presents an interface of Add and Retrieve
contracts, as shown in Figure 5. The Add contract allows System Reporter to add termination information to the report, and
the Retrieve contract allows System Reporter to retrieve the added termination information. Termination Manager has the
same “no memory creation” requirements as System Reporter, and therefore must aggregate one Termination Data

Figure 4 Diagnostic Manager and Diagnostic Data Abstractions

N Diagnostic
Manager

Add
Retrieve

Diagnostic
Data

Get
Set
Update

Figure 3 System Reporter Abstraction

System
Reporter

Diagnostic Manager

Add
GetReporter

Diagnostic Data

Termination Manager

Termination Data

 7

abstraction (since termination is binary – either normal or abnormal), and keep it persistent during its lifetime. This
abstraction needs to be persistent to work correctly.

7.5 Termination Data Abstraction

Termination Data is a data abstraction, and has the responsibility to encapsulate information specific to the system
termination status. To fulfill this responsibility, this abstraction presents an interface of Get and Set contracts, as shown in
Figure 5. The copy constructor, assignment operator, or Set contract can be used by Termination Manager to initialize the
abstraction. The Get contract returns data encapsulated by the abstraction.

8 Service Package

The Service package has the responsibility to encapsulate all potentially system-wide service abstractions necessary to fulfill
the system requirements. If a service abstraction is specific to one package, then it belongs in that package, otherwise it
belongs in this package. As discussed in Section 4.1, this package is the second lowest package in the system, and can depend
on the Diagnostics package. Figure 6 shows the hierarchy of the abstractions in the package. Each abstraction in the package
is detailed further in this section.

8.1 Constants Service Abstraction

Constants Service is a control abstraction, and has the responsibility to provide a single access point to instrument-specific or
useful processing constants. To fulfill this responsibility, this abstraction presents an interface of size constants, as show in
Figure 7. This abstraction is not meant to be instantiated, but instead provide non-dynamic data into the global space.
Persistency is not an issue.

Figure 5 Termination Manager and Termination Data Abstractions

Termination
Manager

Add
Retrieve

Termination
Data

Get
Set

Figure 6 Service Package Hierarchy

Metadata Service Constants Service HDF5 Service

Missing Value Service Program Abortion Service

PCF Service

 8

8.2 HDF5 Service Abstraction

HDF5 Service is a control abstraction, and has the responsibility to provide simple and coherent access to HDF5 services
provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with the SDP Toolkit, and presents
an interface of many file and field access contracts, as shown in Figure 8. The OpenFile contract opens an existing HDF5
file. The CloseFile contract closes an HDF5 file. The OpenSwath contract opens an existing swath. The CloseSwath
contract closes access to a swath. The GetDimensionSize contract returns a defined dimension size, the GetFieldDimensions
retrives the dimensions of a given field, and the GetFieldFillValue contract returns the fill value of an already defined field.
The WriteField contract writes data to a field, and the WriteAttribute contract writes a file-level attribute. The ReadField
contract reads a field. This abstraction need not be persistent to work correctly, though this abstraction does return data that
needs to stay persistent to work correctly. Therefore, the abstraction that uses this abstraction must either aggregate the
returned data, or begin and end service access within a persistent scope.

8.3 Missing Value Service Abstraction

Missing Value Service is a control abstraction, and has the responsibility to provide a single access point for missing value
representation and comparison checking. To fulfill this responsibility, this abstraction presents an interface of missing value
retrieval contracts and missing value comparison contracts, as shown in Figure 9. The Get*MissingValue contracts all return
the primitive-specific representation of system-wide missing value, and the IsMissingValue contracts tests whether a value is
the missing value. This abstraction need not be persistent to work correctly.

Figure 7 Constants Service Abstraction

Constants
Service

CHANNEL_SIZE
CHOPPERREV_SIZE
MINORFRAME_SIZE
SCAN_MAXIMUMSIZE
MAFREVS_SIZE
MIFREVS_SIZE
FILEMAFS_MAXSIZE
FILEMIFS_MAXSIZE
FILEREVS_MAXSIZE

Figure 8 HDF5 Service Abstraction

HDF5
Service

CloseFile
CloseSwath
GetDinensionSize
GetFieldDimensions
GetFieldFillValue
OpenFile
OpenSwath
ReadField
WriteAttribute
WriteField

SDP Toolkit

 9

8.4 Program Abortion Service Abstraction

Program Abortion Service is a control abstraction, and has the responsibility to provide a consistent means to abort the
program. To fulfill this responsibility, this abstraction collaborates with System Reporter, and presents an interface of Abort
contracts, as shown in Figure 10. These contracts add an abnormal termination notice to the Report Generator abstraction,
and then abort the system with a failure indication. This abstraction need not be persistent to work correctly. This
abstraction has not been shown in any collaboration figures, but of course is available to any abstraction that needs this
access.

8.5 PCF Service Abstraction

PCF Service is a control abstraction, and has the responsibility to provide simple and coherent access to process control file
(PCF) access services provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with the SDP
Toolkit, and presents an interface of GetFilename and GetParameter contracts, as shown in Figure 11. The GetFilename
contracts provide multiple ways to retrieve the name of a file listed in the PCF. The GetParameter contract provides a means
of retrieving an input parameter listed in the PCF. This abstraction need not be persistent to work correctly.

Figure 9 Missing Value Service Abstraction

Missing Value
Service

GetShortMissingValue
GetUnsignedShortMissingValue
GetIntMissingValue
GetLongMissingValue
GetFloatMissingValue
GetDoubleMissingValue
IsMissingValue

Figure 10 Program Abortion Service Abstraction

Program Abortion
Service

Abort
System Reporter

Figure 11 PCF Service Abstraction

PCF
Service

GetFilename
GetParameter

SDP Toolkit

 10

8.6 Metadata Service Abstraction

Metadata Service is a control abstraction, and has the responsibility to provide simple and coherent access to ECS metadata
services provided via the SDP Toolkit. To fulfill this responsibility, this abstraction collaborates with PCF Service and the
SDP Toolkit, and presents an interface of Set and Write contracts, as shown in Figure 12. The Set contracts allow setting of
ECS metadata parameters, and the Write contract writes the ECS metadata to the file with which it is connected. ECS service
access needs to be initialized and terminated, but that should happen upon abstraction instantiation and destruction,
respectively. This abstraction needs to be persistent to work correctly.

9 File Package

The File package has the responsibility to encapsulate all abstractions necessary to provide the system a consistent means to
interact with data files. As discussed in Section 4.1, this package is the third lowest package in the system, and can depend
on the Diagnostics and Service packages. Figure 13 shows the hierarchy of the abstractions in the package. Each abstraction
in the package is detailed further in this section.

9.1 Processor File Abstraction

Processor File is a control abstraction, and has the responsibility to manage low-level access to all files within the system, but
only as a pure virtual abstraction intended to be used as a base for all file abstractions in the system. To fulfill this
responsibility, this abstraction collaborates with PCF Service, and presents an interface of IsValid, GetLogical and GetName
contracts, as shown in Figure 14. The IsValid contract determines if the file is valid, he GetLogical contract returns the
logical ID of the file, and the GetName contract returns the name of the file. This abstraction does not handle opening and
closing, as those are specific to a type of file. For this abstraction to be used in a realistic manner, the abstraction that is
derived from it needs to be persistent, unless this abstraction is used solely for the purpose of testing the validity of a file.

Figure 12 Metadata Service Abstraction

Metadata
Service

Set
Write

PCF Service

SDP Toolkit

Figure 13 File Package Hierarchy

ASCII File

Processor File

HDF5 File

 11

9.2 ASCII File Abstraction

ASCII File is a control abstraction, and has the responsibility to manage access to a read-only, sequential-access ASCII file,
but only as a pure virtual abstraction intended to be used as a base for file abstractions that model ASCII files. To fulfill this
responsibility, this abstraction collaborates with Processor File, and presents an interface of Open, Close, Read and GetToken
contracts, as shown in Figure 15. The Open contract opens the existing file for reading, the Close contract closes the opened
file, and the Read contract reads the next line in the opened file. The GetToken contracts are provided to help parse a file line
in the usual way: to extract a particular token from the line. For this abstraction to work correctly across multiple Read calls,
the abstraction that is derived from this abstraction needs to be persistent.

9.3 HDF5 File Abstraction

HDF5 File is a control abstraction, and has the responsibility to manage access to a write-only, HDF5-formatted file, but only
as a pure virtual abstraction intended to be used as a base for file abstractions that model HDF5 files. To fulfill this
responsibility, this abstraction collaborates with Processor File and HDF5 Service, and presents an interface of opening,
closing, reading and writing contracts, as shown in Figure 16. The Open contract opens an HDF5 file, and the Close contract
closes an HDF5 file. The GetDimensionSize contract retrieves a given field dimension size. The ReadField contracts read
data from an HDF5 file, the WriteField contract writes a field’s data to an HDF5 file, and the WriteAttribute writes a file-
level attribute to a newly created HDF5 file. For this abstraction to work correctly across its multiple calls, the abstraction
that is derived from this abstraction needs to be persistent.

10 HIRDLS1C Package

The HIRDLS1C package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
extract scans from and write scans to the HIRDLS L1C file. As shown in Figure 1, this package is used by the Processor,
Oscillation Corrector, Kapton Corrector, Obscuration Corrector and Error Corrector packages, and has access to the File,
Service and Diagnostics packages. Figure 17 shows the hierarchy of the abstractions in the package. Each abstraction in the
package is detailed further in this section.

Figure 14 Processor File Abstraction

Processor
File

IsValid
GetLogical
GetName

PCF Service

Figure 15 ASCII File Abstraction

ASCII
File

Close
GetToken
Open
Read

Processor File

 12

10.1 HIRDLS1C Manager Abstraction

Scan Extractor is a control abstraction, and has the responsibility to manage extracting scans from and writing scans to a
HIRDLS1C File To fulfill this responsibility, this abstraction collaborates with HIRDLS1C File, Scan Discriminator,
Discrimination Data and HIRDLS1C Scan, and presents an interface of one ExtractScan contract and one WriteScan contract,
as shown in Figure 18. The ExtractScan contract is to return the next scan in the file, in the form of a HIRDLS1C Scan. It is
specified here that Scan Extractor, in the interest of efficiency, read in from HIRDLS1C File all the data from all the fields
necessary to fill a HIRDLS1C Scan. The WriteScan contract writes a scan into the next scan spot in the file. Also specified
here is that HIRDLS1C Manager must manage the scan sequence, and return a Boolean when it can not return the next scan
in sequence, whether from error or from a lack of further scans. Due to its responsibility, this abstraction needs to be
persistent to work correctly.

Figure 16 HDF5 File Abstraction

HDF5
File

Close
GetDimensionSize
Open
ReadField
WriteAttribute
WriteField

Processor File

HDF5 Service

HIRDLS1C Manager

Scan Discriminator

Discriminator Data

Figure 17 HIRDLS1C Package Hierarchy

HIRDLS1C Scan HIRDLS1C File

Figure 18 HIRDLS1C Manager Abstraction

HIRDLS1C
Manager

Scan Discriminator ExtractScan
WriteScan

HIRDLS1C File

Discriminator Data

HIRDLS1C Scan

 13

10.2 HIRDLS1C File Abstraction

HIRDLS1C File is a control abstraction, and has the responsibility to manage all access to a HIRDLS1C file. To fulfill this
responsibility, this abstraction collaborates with HDF5 File, and presents an interface of one GetFile contract, one Read
contract and one Write contract, as shown in Figure 19. The GetFile contract returns an instance of a HIRDLS1C File
abstraction. At this time, this instance is considered a Singleton3, as there must be only one file instance in the processor.
The Read contract returns the contents of a given HIRDLS1C field, and the Write contract writes data into a given
HIRDLS1C field. These two contracts are to return a Boolean status to the caller, indicating if it was able to retrieve or write
the field or not. This abstraction needs to be kept persistent to work correctly.

10.3 Scan Discriminator Abstraction

Scan Discriminator is a process abstraction, and has the responsibility to discriminate the scans from a HIRDLS1C file. To
fulfill this responsibility, this abstraction collaborates with Discriminator Data, and presents an interface of one Discriminate
contract and one GetNext contract, as shown in Figure 26. The Discriminate contract initializes the abstraction. The
GetNext contract returns a Discriminator Data abstraction that represents the next scan, and is to return a Boolean status to
the caller, indicating if there was another scan to return. This abstraction needs to be kept persistent to work correctly.

10.4 Discriminator Data Abstraction

Discriminator Data is a data abstraction, and has the responsibility to encapsulate information specific to scan discrimination.
To fulfill this responsibility, this abstraction presents an interface of Get and Set contracts, as shown in Figure 26. The copy
constructor, assignment operator, or Set contract can be used by Scan Discriminator to initialize the abstraction. The Get
contract returns data encapsulated by the abstraction.

3 See Section 7.1

Figure 19 HIRDLS1C File Abstraction

HIRDLS1C
File

HDF5 File

GetFile
Read
Write

Figure 20 Scan Discriminator and Discriminator Data Abstractions

Scan
Discriminator

Discriminator
Data

Discriminate
GetNext

Get
Set

 14

10.5 HIRDLS1C Scan Abstraction

HIRDLS1C Scan is a data abstraction, and has the responsibility to manage access to a HIRDLS1C scan’s data. To fulfill
this responsibility, this abstraction presents an interface of contracts to test scan aspects, one Denominalize contract, one
Reset contract, one Set contract, and various Get contracts, as shown in Figure 27. The Set contract is used to initialize the
abstraction. The Get contracts are used to retrieve various “sets” of scan data (rather than retrieve all fields when only a
portion is needed). The Reset contract resets corrected radiances and radiance errors. The Denominalize contract
denominalizes the scan. This abstraction needs to be persistent to work correctly, unless the Set contract, change contracts
and Get contract are all called during the same procedural calling sequence.

11 Oscillation Corrector Package

The Oscillation Corrector package has the responsibility to encapsulate all abstractions necessary to provide the system a
means to correct for the oscillation effect in HIRDLS1C scans. As shown in Figure 1, this package is used by the Processor
package, and has access to the HIRDLS1C, File, Service and Diagnostics packages. Figure 22 shows the hierarchy of the
abstractions in the package. Each abstraction in the package is detailed further in this section.

Figure 21 HIRDLS1C Scan Abstraction

HIRDLS1C
Scan

IsCorrectable
IsUpScan
Denominalize
Get
Reset
Set

Figure 22 Oscillation Corrector Package Hierarchy

Remover Creator

Wave Corrector

STXX Wave Remover

ST00 Wave Remover EOF File

EOF Data

 15

11.1 Wave Corrector Abstraction

Wave Corrector is a process abstraction, and has the responsibility to correct for the oscillation effects on all HIRDLS scans.
To fulfill this responsibility, this abstraction collaborates with HIRDLS1C Manager, HIRDLS1C Scan, Remover Creator and
STXX Wave Remover, and presents an interface of one Correct contract, as shown in Figure 23. The Correct contract loops
over all the scans returned by HIRDLS1C Manager, first calling Remover Creator to return the appropriate ST-specific wave
remover, then extracting the radiances and/or errors from HIRDLS1C Scan, passing them to the wave remover for correction,
resetting the corrected radiances and/or errors in HIRDLS1C Scan, and then passing the corrected scan back to HIRDLS1C
Manager for writing. Since this abstraction needs to initialize itself with EOF data before it can correct scans, it needs to be
persistent to work efficiently.

11.2 Remover Creator Abstraction

Remover Creator is a process abstraction, and each has the responsibility to create the appropriate STXX Wave Remover to
be used by the system. To fulfill this responsibility, this abstraction collaborates with STXX Wave Remover and ST00 Wave
Remover, and presents an interface of one Create contract, as shown in Figure 24. The Create contract is specified to be an
Abstract Factory creational pattern4, and return an STXX Wave Remover (or ST00 Wave Remover as default). This
abstraction is not meant to be instantiated, but instead provide non-dynamic data into the global space. Persistency is not an
issue.

11.3 STXX Wave Remover Abstraction

STXX Wave Remover is a placeholder for process abstractions ST13 Wave Remover, ST22 Wave Remover, ST23 Wave
Remover and ST30 Wave Remover, and each collaborates with ST00 Wave Remover, HIRDLS1C Scan, EOF File and EOF
Data, and each has the responsibility to remove the oscillation effect on a HIRDLS1C scan that is of their respective scan

4 As detailed in Design Patterns, Elements of Reusable Object-Oriented Software by Gamma, et.al., 1995

Figure 24 Remover Creator Abstraction

Remover
Creator

Create

STXX Wave Remover

ST00 Wave Remover

Figure 23 Wave Corrector Abstraction

Wave
Corrector

Correct HIRDLS1C Scan

HIRDLS1C Manager

Remover Creator

STXX Wave Remover

 16

table. To fulfill this responsibility, these abstractions collaborate with ST00 Wave Remover, and present an interface of one
Remove contract, as shown in Figure 25. The Remove contract fulfills the responsibility of removing the oscillation effect
on a scan’s radiances and/or errors. Since these abstractions load in scan table specific information, they need to be persistent
to work efficiently.

11.4 ST00 Wave Remover Abstraction

ST00 Wave Remover is a process abstraction, and each has the responsibility to provide a base abstraction for other
abstractions (placeholded by STXX Wave Remover) that remove oscillation effects from a HIRDLS1C scan. To fulfill this
responsibility, this abstraction presents an interface of two Remove contracts (one base, one virtual), as shown in Figure 25.
The virtual Remove contract defines the virtual methodology that all STXX Wave Removers are to mimic, and returns a
Boolean of “false” to the system, as its instantiation means that there is no way to remove the wave for the given scan table.
The base Remove contract is to be used by the STXX Wave Removers, after they load in their respective scan table EOFs.
Persistency is not an issue.

11.5 EOF File Abstraction

EOF File is a control abstraction, and has the responsibility to manage all access to a wave correction EOF file. To fulfill this
responsibility, this abstraction collaborates with ASCII File and EOF Data, and presents an interface of one GetFile contract
and one Read contract, as shown in Figure 26. The GetFile contract returns an instance of an EOF File abstraction. At this
time, this instance is not considered a Singleton5, as EOF files are read-only files, but the contract for returning an instance of
this abstraction is left to look like a Singleton, in the case that that is what is implemented, or changed to during testing
and/or maintenance. The Read contract reads the data from the file and stores it into an EOF Data instance. This contract is
to return a Boolean status to the caller, indicating if it was able to read the file or not. This abstraction needs to be kept
persistent to work correctly, except in the case that the instantiated file is opened, read completely, and closed, in one
structural calling sequence.

11.6 EOF Data Abstraction

EOF Data is a data abstraction, and has the responsibility to manage access to the data read from a wave correction EOF File.
To fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract, as shown in
Figure 26. This abstraction also presents some constant values denoting various sizes of the data it contains. The copy

5 See Section 7.1

Figure 25 STXX Wave Remover and ST00 Wave Remover Abstractions

STXX
Wave Remover

Remove

ST00
Wave Remover

Remove
EOF File

EOF Data

HIRDLS1C Scan

 17

constructor, assignment operator, or Set contract can be used by EOF File to initialize the abstraction. The Get contract
allows retrieval of all the data.

12 Kapton Corrector Package

The Kapton Corrector package has the responsibility to encapsulate all abstractions necessary to provide the system a means
to correct for the Kapton effect in HIRDLS1C scans. As shown in Figure 1, this package is used by the Processor package,
and has access to the HIRDLS1C, File, Service and Diagnostics packages. Figure 27 shows the hierarchy of the abstractions
in the package. Each abstraction in the package is detailed further in this section.

12.1 Kapton Corrector Abstraction

Kapton Corrector is a process abstraction, and has the responsibility to correct for the Kapton emission effects on HIRDLS
scans To fulfill this responsibility, this abstraction collaborates with HIRDLS1C Manager, HIRDLS1C Scan, Elevations
File, Elevations Data, Translations File, Translations Data, SpinUp Data Creator, SpinUpData, Correction Data Loader,
Correction File and Correction Data, and presents an interface of one SpinUp contract and one Correct contract, as shown in
Figure 28. To perform Kapton emission correction, it is necessary to pass through all the HIRDLS1C scans twice. The first
pass calls the SpinUp contract, which uses the HIRDLS1C scans to generate the data necessary to initialize Kapton emission
correction. The second pass calls the Correct contract, which applies the spin-up data, and other necessary data, to correct for
the Kapton emission effect in the HIRDLS1C scans. Since this abstraction needs to initialize itself with spin-up data before it
can correct scans, it needs to be persistent to work correctly.

Figure 26 EOF File and EOF Data Abstractions

EOF
File

ASCII File

GetFile
Read

EOF
Data

Get
Set

Figure 27 Kapton Corrector Package Hierarchy

Elevations File

Kapton Corrector

Elevations Data

Translations File

Translations Data

SpinUp Data Creator

SpinUp Data

Correction Data Loader

Correction File

Correction Data

 18

12.2 Elevations File Abstraction

Elevations File is a control abstraction, and has the responsibility to manage all access to a Kapton correction elevations file.
To fulfill this responsibility, this abstraction collaborates with ASCII File and Elevations Data, and presents an interface of
one GetFile contract and one Read contract, as shown in Figure 29. The GetFile contract returns an instance of an Elevations
File abstraction. At this time, this instance is not considered a Singleton6, as elevation files are read-only files, but the
contract for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is
implemented, or changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it
into an Elevations Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the
file or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

6 See Section 7.1

Figure 29 Elevations File and Elevations Data Abstractions

Elevations
File

ASCII File

GetFile
Read

Elevations
Data

Get
Set

Figure 28 Kapton Corrector Abstraction

Kapton
Corrector

Correct
SpinUp

HIRDLS1C Scan

Elevations File

Elevations Data

Translations File

Translations Data

SpinUp Data Creator

SpinUp Data

HIRDLS1C Manager

Correction Data Loader

Correction Data

 19

12.3 Elevations Data Abstraction

Elevations Data is a data abstraction, and has the responsibility to manage access to the data read from a Kapton correction
Elevations File. To fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract,
as shown in Figure 29. The copy constructor, assignment operator, or Set contract can be used by Elevations File to initialize
the abstraction. The Get contract allows retrieval of all the data.

12.4 Translations File Abstraction

Translations File is a control abstraction, and has the responsibility to manage all access to a Kapton correction translations
file. To fulfill this responsibility, this abstraction collaborates with ASCII File and Translations Data, and presents an
interface of one GetFile contract and one Read contract, as shown in Figure 30. The GetFile contract returns an instance of a
Translations File abstraction. At this time, this instance is not considered a Singleton7, as translation files are read-only files,
but the contract for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is
implemented, or changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it
into a Translations Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the
file or not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is
opened, read completely, and closed, in one structural calling sequence.

12.5 Translations Data Abstraction

Translations Data is a data abstraction, and has the responsibility to manage access to the data read from a Kapton correction
Translations File. To fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract,
as shown in Figure 30. The copy constructor, assignment operator, or Set contract can be used by Translations File to
initialize the abstraction. The Get contract allows retrieval of all the data.

12.6 SpinUp Data Creator Abstraction

SpinUp Data Creator is a control abstraction, and has the responsibility to manage creation of the Kapton correction spin-up
data. To fulfill this responsibility, this abstraction collaborates with HIRDLS1C Scan, Correction Data and SpinUp Data, and
presents an interface of one Add contract and one Retrieve contract, as shown in Figure 31. The Add contract adds
HIRDLS1C Scan data to the spin-up data collection. The Retrieve contract retrieves the spin-up data. This abstraction needs
to be persistent to work correctly.

7 See Section 7.1

Figure 30 Translations File and Translations Data Abstractions

Translations
File

ASCII File

GetFile
Read

Translations
Data

Get
Set

 20

12.7 SpinUp Data Abstraction

SpinUp Data is a data abstraction, and has the responsibility to manage access to the data created by SpinUp Data Creator.
To fulfill this responsibility, this abstraction presents an interface of one Set contract and one Get contract, as shown in
Figure 31. The copy constructor, assignment operator, or Set contract can be used by SpinUp Data Creator to initialize the
abstraction. The Get contract allows retrieval of all the data.

12.8 Correction Data Loader Abstraction

Correction Data Loader is a process abstraction, and each has the responsibility to load the appropriate correction data into
the system. To fulfill this responsibility, this abstraction collaborates with Correction File and Correction Data, and presents
an interface of one Load contract, as shown in Figure 32. The Load contract returns the appropriate correction data to be
used for correction. Since this abstraction reads in data from file(s), it needs to be persistent to work efficiently.

12.9 Correction File Abstraction

Correction File is a control abstraction, and has the responsibility to manage all access to a Kapton correction file. To fulfill
this responsibility, this abstraction collaborates with HDF5 File and Correction Data, and presents an interface of one GetFile
contract and one Read contract, as shown in Figure 33. The GetFile contract returns an instance of a Correction File
abstraction. At this time, this instance is not considered a Singleton8, as translation files are read-only files, but the contract
for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is implemented, or
changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it into a Correction
Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the file or not. This
abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is opened, read
completely, and closed, in one structural calling sequence.

8 See Section 7.1

Figure 32 Correction Data Loader Abstraction

Correction
Data Loader

Load

Correction File

Correction Data

Figure 31 SpinUp Data Creator and SpinUp Data Abstractions

SpinUp
Data Creator

Correction Data

Add
Retrieve

SpinUp
Data

HIRDLS1C Scan

Get
Set

 21

12.10 Correction Data Abstraction

Correction Data is a data abstraction, and has the responsibility to manage access to the data read from a Kapton Correction
File. To fulfill this responsibility, this abstraction presents an interface of one size constant, one Set contract and one Get
contract, as shown in Figure 33. The copy constructor, assignment operator, or Set contract can be used by Correction File to
initialize the abstraction. The Get contract allows retrieval of all the data.

13 Obscuration Corrector Package

The Obscuration Corrector package has the responsibility to encapsulate all abstractions necessary to provide the system a
means to correct for the field-of-view obscuration effect in HIRDLS1C scans. As shown in Figure 1, this package is used by
the Processor package, and has access to the HIRDLS1C, File, Service and Diagnostics packages. Figure 34 shows the
hierarchy of the abstractions in the package. Each abstraction in the package is detailed further in this section.

13.1 Obscuration Corrector Abstraction

Obscuration Corrector is a process abstraction, and has the responsibility to correct for the field-of-view obscuration effects
on a HIRDLS scan. To fulfill this responsibility, this abstraction collaborates with HIRDLS1C Manager, HIRDLS1C Scan,
Obscuration File and Obscuration Data, and presents an interface of one Correct contract, as shown in Figure 35. The
Correct contract applies the obscuration data (read in on instantiation) to all HIRDLS1C scan radiances and/or errors. Since
this abstraction needs to initialize itself with obscuration data before it can correct scans, it needs to be persistent to work
efficiently.

Figure 33 Correction File and Correction Data Abstractions

Correction
File

HDF5 File

GetFile
Read

Correction
Data

CORRECTION_SIZE
Get
Set

Figure 34 Oscillation Corrector Package Hierarchy

Obscuration File

Obscuration Corrector

Obscuration Data

 22

13.2 Obscuration File Abstraction

Obscuration File is a control abstraction, and has the responsibility to manage all access to an obscuration file. To fulfill this
responsibility, this abstraction collaborates with HDF5 File and Obscuration Data, and presents an interface of one GetFile
contract and one Read contract, as shown in Figure 36. The GetFile contract returns an instance of an Obscuration File
abstraction. At this time, this instance is not considered a Singleton9, as obscuration files are read-only files, but the contract
for returning an instance of this abstraction is left to look like a Singleton, in the case that that is what is implemented, or
changed to during testing and/or maintenance. The Read contract reads the data from the file and stores it into an
Obscuration Data instance. This contract is to return a Boolean status to the caller, indicating if it was able to read the file or
not. This abstraction needs to be kept persistent to work correctly, except in the case that the instantiated file is opened, read
completely, and closed, in one structural calling sequence.

13.3 Obscuration Data Abstraction

Obscuration Data is a data abstraction, and has the responsibility to manage access to the data read from an Obscuration File.
To fulfill this responsibility, this abstraction presents an interface of one size constant, one Set contract and one Get contract,
as shown in Figure 36. The copy constructor, assignment operator, or Set contract can be used by Obscuration File to
initialize the abstraction. The Get contract allows retrieval of all the data.

14 Error Corrector Package

The Error Corrector package has the responsibility to encapsulate all abstractions necessary to provide the system a means to
correct for the error in the corrections in HIRDLS1C scans. As shown in Figure 1, this package is used by the Processor

9 See Section 7.1

Figure 36 Obscuration File and Obscuration Data Abstractions

Obscuration
File

HDF5 File

GetFile
Read

Obscuration
Data

CORRECTION_SIZE
Get
Set

Figure 35 Obscuration Corrector Abstraction

Obscuration
Corrector

Correct HIRDLS1C Scan

Obscuration File

Obscuration Data

HIRDLS1C Manager

 23

package, and has access to the HIRDLS1C, File, Service and Diagnostics packages. Figure 37 shows the hierarchy of the
abstractions in the package. Each abstraction in the package is detailed further in this section.

14.1 Error Corrector Abstraction

Error Corrector is a process abstraction, and has the responsibility to correct the effect of the corrections on the radiance
errors. To fulfill this responsibility, this abstraction collaborates with HIRDLS1C Scan, Error File and Error Data, and
presents an interface of one Correct contract, as shown in Figure 38. The Correct contract applies the error effect data (read
in on instantiation) to a HIRDLS1C scan errors. Since this abstraction needs to initialize itself with obscuration data before it
can correct scans, it needs to be persistent to work efficiently.

14.2 Error File Abstraction

Error File is a control abstraction, and has the responsibility to manage all access to an error effect file. To fulfill this
responsibility, this abstraction collaborates with HDF5 File and Error Data, and presents an interface of one GetFile contract
and one Read contract, as shown in Figure 39. The GetFile contract returns an instance of an Error File abstraction. At this
time, this instance is not considered a Singleton10, as obscuration files are read-only files, but the contract for returning an
instance of this abstraction is left to look like a Singleton, in the case that that is what is implemented, or changed to during
testing and/or maintenance. The Read contract reads the data from the file and stores it into an Error Data instance. This
contract is to return a Boolean status to the caller, indicating if it was able to read the file or not. This abstraction needs to be
kept persistent to work correctly, except in the case that the instantiated file is opened, read completely, and closed, in one
structural calling sequence.

10 See Section 7.1

Figure 37 Error Corrector Package Hierarchy

Error File

Error Corrector

Error Data

Figure 38 Error Corrector Abstraction

Error
Corrector

Correct HIRDLS1C Scan

Error File

Error Data

HIRDLS1C Manager

 24

14.3 Error Data Abstraction

Error Data is a data abstraction, and has the responsibility to manage access to the data read from an Error File. To fulfill this
responsibility, this abstraction presents an interface of one size constant, one Set contract and one Get contract, as shown in
Figure 39. The copy constructor, assignment operator, or Set contract can be used by Error File to initialize the abstraction.
The Get contract allows retrieval of all the data.

15 Processor Package

The Processor package has the responsibility to encapsulate all abstractions necessary to correct L1 data. As shown in Figure
1, this package is the highest-level package in the system, and has access to the HIRDLS1C, Oscillation Corrector, Kapton
Corrector, Obscuration Corrector, Error Corrector, File, Service and Diagnostics packages. The only abstraction in this
package is L1C Processor, and it is detailed further in this section.

Figure 40 L1C Processor Abstraction

L1C
Processor

Process

System Reporter

HIRDLS1C Manager

Wave Corrector

Kapton Corrector

Obscuration Corrector

Error Corrector

Figure 39 Error File and Error Data Abstractions

Error
File

HDF5 File

GetFile
Read

Error
Data

CORRECTION_SIZE
Get
Set

 25

15.1 L1C Processor Abstraction

L1C Processor is a process abstraction, and has the responsibility to manage the correction of HIRDLS L1 scans. To fulfill
this responsibility, this abstraction collaborates with System Reporter, HIRDLS1C Manager, Wave Corrector, Kapton
Corrector, Obscuration Corrector and Error Corrector, and presents an interface of one Process contract, as shown in Figure
40. The Process contract first instantiates a System Reporter abstraction and a HIRDLS1C Manager abstraction, and then
calls, in sequence: Wave Corrector, Kapton Corrector, Obscuration Corrector and Error Corrector, passing the HIRDLS1C
Manager to each. Since this abstraction fulfills its tasks in one call, it does not need to be persistent to work correctly.

A-1

Appendix A – Abstraction Interfaces

A.1 System Reporter

static system_reporter* GetReporter ()

~system_reporter ()

void Add (enum diagnostic_code code)
void Add (enum termination_code code, const string& message)

A.2 Diagnostic Manager

diagnostic_manager ()

~diagnostic_manager ()

static int const MAXIMUM_DIAGNOSTICS

void Add (enum diagnostic_code code)
bool Retrieve (enum diagnostic_code code, diagnostic_data& data) const

A.3 Diagnostic Data

diagnostic_data ()
diagnostic_data (const diagnostic_data& data)
diagnostic_data& operator= (const diagnostic_data& data)

~diagnostic_data ()

enum diagnostic_code {<the list of acceptable diagnostic codes>}

void Get (enum diagnostic_code& code, long& occurrences, string& message) const
void Set (enum diagnostic_code code, long occurrences, const string& message)
void Update ()

A.4 Termination Manager

termination_manager ()

~termination_manager ()

void Add (enum termination_code code, const string& message)
void Retrieve (termination_data& data) const

A.5 Termination Data

termination_data ()
termination_data (const termination_data& data)
termination_data& operator= (const termination_data& data)

~termination_data ()

enum termination_code {TERMINATION_NORMAL, TERMINATION_ABNORMAL}

void Get (enum termination_code& code, string& message) const
void Set (enum termination_code code, const string& message)

A-2

A.6 Constants Service

static int const CHANNEL_SIZE
static int const CHOPPERREV_SIZE
static int const MINORFRAME_SIZE
static int const SCAN_MAXIMUMSIZE
static int const MAFREVS_SIZE
static int const MIFREVS_SIZE
static int const FILEMAFS_MAXSIZE
static int const FILEMIFS_MAXSIZE
static int const FILEREVS_MAXSIZE

A.7 HDF5 Service

hdf5_service ()

~hdf5_service ()

static int const DIMENSIONS_MAXIMUMSIZE

bool CloseFile (long fileid) const
bool CloseSwath (long swathid) const
bool GetDimensionSize (long swathid, const string& name, long& size) const
bool GetFieldDimensions (long swathid, const string& fieldname, int& rank,
 long dimensions[DIMENSIONS_MAXIMUMSIZE]) const
bool GetFieldFillValue (long swathid, const string& name, void* value) const
bool OpenFile (const string& name, long& id) const
bool OpenSwath (long fileid, const string& name, long& id) const
bool ReadField (long swathid, const string& name, int rank, const long starts[],
 const long edges[], void* data) const
bool WriteAttribute (long fileid, const string& name, const string& value) const
bool WriteField (long swathid, const string& fieldname, int dimensioncount,
 const long starts[], const long edges[], const void* data) const

A.8 Missing Value Service

static inline double GetDoubleMissingValue ()
static inline float GetFloatMissingValue ()
static inline int GetIntMissingValue ()
static inline long GetLongMissingValue ()
static inline short GetShortMissingValue ()
bool IsMissingValue (double value) const
bool IsMissingValue (float value) const
bool IsMissingValue (int value) const
bool IsMissingValue (long value) const
bool IsMissingValue (short value) const

A.9 Program Abortion Service

static void Abort () const
static void Abort (const string& message) const

A.10 PCF Service

static bool GetFilename (int id, string& name) const
static bool GetFilename (int id, int version, string& name) const
static bool GetParameter (int id, string& parameter) const

A-3

A.11 Metadata Service

ecs_service (int datafilelogical, int ecsfilelogical)

~ecs_service ()

bool Set (const string& name, int value)
bool Set (const string& name, const void* value)
bool Set (const string& name, const string& value)
bool Write ()

A.12 Processor File

processor_file (int id)
processor_file (int id, int version)

~processor_file ()

inline int GetLogical () const
inline string GetName () const
inline bool IsValid () const

A.13 ASCII File

ascii_file (int id)

~ascii_file ()

void Close ()
bool GetToken (const string& line, int number, double& value) const
bool GetToken (const string& line, int number, float& value) const
bool GetToken (const string& line, int number, int& value) const
bool GetToken (const string& line, int number, string& value) const
bool Open ()
bool Read (string& line)
bool Read (string& line, char commentchar)

A.14 HDF5 File

hdf5_file (int id, const string& swathname)

~hdf5_file ()

void Close ()
bool Open ()
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 short& fillvalue, short* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 int& fillvalue, int* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 float& fillvalue, float* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 double& fillvalue, double* data) const
bool ReadField (const string& name, int dimensions, const long start[], const long edge[],
 unsigned short& fillvalue, unsigned short* data) const
bool WriteAttribute (const string& name, const string& value)
bool WriteField (const string& name, int dimensions, const long starts[],
 const long edges[], const void* data)

A-4

A.15 HIRDLS1C Manager

hirdls1c_manager ()

~hirdls1c_manager ()

bool ExtractScan (hirdls1c_scan& scan)
bool WriteScan (const hirdls1c_scan& scan)

A.16 HIRDLS1C File

static hirdls1c_file* GetFile ()

~hirdls1c_file ()

enum hirdls1c_code {<the list of acceptable diagnostic codes>}

bool Read (enum hirdls1c_code code, void* data)
bool Write (enum hirdls1c_code code, const void* data)

A.17 Scan Discriminator

scan_discriminator ()

~scan_discriminator ()

void Discriminate (long size, const short scannumbers[])
bool GetNext (discriminator_data& data)

A.18 Discriminator Data

discriminator_data ()
discriminator_data (const discriminator_data& data)
discriminator_data& operator= (const discriminator_data& data)

~discriminator_data ()

void Get (int& firstrev, int& lastrev, int& scannumber) const
void Set (int firstrev, int lastrev, int scannumber)

A.19 HIRDLS1C Scan

hirdls1c_scan ()

~hirdls1c_scan ()

inline bool IsCorrectable () const
inline bool IsUpScan () const
void Demoninalize ()
void Get (int& scanlength, float elevations[SCAN_MAXIMUMSIZE],
 double radiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE]) const
void Get (int& scanlength, float elevations[SCAN_MAXIMUMSIZE],
 double errors[CHANNEL_SIZE][SCAN_MAXIMUMSIZE]) const
void Get (int& startrev, int& scanlength, short scannumbers[SCAN_MAXIMUMSIZE],
 int flags[SCAN_MAXIMUMSIZE], double radiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE],
 double errors[CHANNEL_SIZE][SCAN_MAXIMUMSIZE]) const
void Set (bool iscorrectable, int startrev, int scanlength, short scannumbersfill,
 const short scannumbers[SCAN_MAXIMUMSIZE], const int flags[SCAN_MAXIMUMSIZE],
 const float elevations[SCAN_MAXIMUMSIZE],

A-5

 const double radiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE],
 const double errors[CHANNEL_SIZE][SCAN_MAXIMUMSIZE])
void Reset (const double radiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE]
 const double errors[CHANNEL_SIZE][SCAN_MAXIMUMSIZE])

A.20 Wave Corrector

wave_correcter ()

~wave_correcter ()

bool Correct (hirdsl1c_manager& hirdls1cmanager)

A.21 Remover Creator

static st00_waveremover* Create (short scantable, double starttime)

A.22 ST00 Wave Remover

st00_waveremover ()

~st00_waveremover ()

#bool Remove (bool isupscan, int highfrequencyfilterpoints, int oscillationfilterpoints,
 int eigenvectorsize, int scanlength,
 const float scanelevations[SCAN_MAXIMUMSIZE],
 const double scanradiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE],
 const double eofelevations[eof_data::ELEVATION_SIZE],
 const double eofscalefactors[CHANNEL_SIZE][eof_data::ELEVATION_SIZE],
 const double eofeigenvectors[eof_data::EIGENVECTOR_SIZE]
 [eof_data::ELEVATION_SIZE],
 double correctedradiances[CHANNEL_SIZE][SCAN_MAXIMUMSIZE]
 double correctederrors[CHANNEL_SIZE][SCAN_MAXIMUMSIZE])
bool Remove (hirdsl1c_scan& scan)

A.23 STXX Wave Remover

stXX_waveremover ()

~stXX_waveremover ()

bool Remove (hirdsl1c_scan& scan)

A.24 EOF File

static eof_file* GetFile ()

~eof_file ()

bool Read (eof_data& data)

A.25 EOF Data

eof_data ()
eof_data (const eof_data& data)
eof_data& operator= (const eof_data& data)

A-6

~eof_data ()

static int const ELEVATION_SIZE
static int const EIGENVECTOR_SIZE

void Get (int& eigenvectorsize, int& highfrequencyfilterpoints, int& oscillationfilterpoints
 double elevations[ELEVATION_SIZE],
 double scalefactors[CHANNEL_SIZE][ELEVATION_SIZE],
 double eigenvectors[EIGENVECTOR_SIZE][ELEVATION_SIZE]) const
void Set (int eigenvectorsize, int highfrequencyfilterpoints, int oscillationfilterpoints
 const double elevations[ELEVATION_SIZE],
 const double scalefactors[CHANNEL_SIZE][ELEVATION_SIZE],
 const double eigenvectors[EIGENVECTOR_SIZE][ELEVATION_SIZE])

A.26 Kapton Corrector

kapton_correcter ()

~kapton_correcter ()

bool SpinUp (hirdls1c_manager& hirdls1cmanager)
bool Correct (hirdsl1c_manager& hirdls1cmanager)

A.27 Elevations File

static elevations_file* GetFile ()

~elevations_file ()

bool Read (elevations_data& data)

A.28 Elevations Data

elevations_data ()
elevations_data (const elevations_data& data)
elevations_data& operator= (const elevations_data& data)

~elevations_data ()

void Get (double elevations[CHANNEL_SIZE]) const
void Set (const double elevations[CHANNEL_SIZE])

A.29 Translations File

static translations_file* GetFile ()

~translations_file ()

bool Read (translations_data& data)

A.30 Translations Data

translations_data ()
translations_data (const translations_data& data)
translations_data& operator= (const translations_data& data)

~translations_data ()

A-7

void Get (double translations[CHANNEL_SIZE]) const
void Set (const double translations[CHANNEL_SIZE])

A.31 SpinUp Data Creator

spinupdata_creator (const double elevations[correction_data::CORRECTION_SIZE])

~spinupdata_creator ()

void Add (hirdls1c_scan& scan)
void Retrieve (spinup_data& data) const

A.32 SpinUp Data

spinup_data ()
spinup_data (const spinup_data& data)
spinup_data& operator= (const spinup_data& data)

~spinup_data ()

void Get (int& count, double upradiances[CHANNEL_SIZE][correction_data::CORRECTION_SIZE],
 double downradiances[CHANNEL_SIZE][correction_data::CORRECTION_SIZE]) const
void Set (int count,
 const double upradiances[CHANNEL_SIZE][correction_data::CORRECTION_SIZE],
 const double downradiances[CHANNEL_SIZE][correction_data::CORRECTION_SIZE])

A.33 Correction Data Loader

correctiondata_loader ()

~correctiondata_loader ()

void Load (double time, correction_data& data)

A.34 Correction File

static correction_file* GetFile ()

~correction_file ()

bool Read (correction_data& data)

A.35 Correction Data

correction_data ()
correction_data (const correction_data& data)
correction_data& operator= (const correction_data& data)

~correction_data ()

static int const CORRECTION_SIZE

void Get (double elevations[ELEVATION_SIZE], int up2x2d2channels[CHANNEL_SIZE],
 int down2x2d2channels[CHANNEL_SIZE], double up2x2d2scales[CHANNEL_SIZE],
 double down2x2d2scales[CHANNEL_SIZE],
 double uptimemeans[CHANNEL_SIZE][ELEVATION_SIZE],
 double downtimemeans[CHANNEL_SIZE][ELEVATION_SIZE],
 double upvectors[3][CHANNEL_SIZE][ELEVATION_SIZE],

A-8

 double downvectors[3][CHANNEL_SIZE][ELEVATION_SIZE]) const
void Set (const double elevations[ELEVATION_SIZE], const int up2x2d2channels[CHANNEL_SIZE],
 const int down2x2d2channels[CHANNEL_SIZE],
 const double up2x2d2scales[CHANNEL_SIZE],
 const double down2x2d2scales[CHANNEL_SIZE],
 const double uptimemeans[CHANNEL_SIZE][ELEVATION_SIZE],
 const double downtimemeans[CHANNEL_SIZE][ELEVATION_SIZE],
 const double upvectors[3][CHANNEL_SIZE][ELEVATION_SIZE],
 const double downvectors[3][CHANNEL_SIZE][ELEVATION_SIZE])

A.36 Obscuration Corrector

obscuration_correcter ()

~obscuration_correcter ()

bool Correct (hirdsl1c_manager& hirdls1cmanager)

A.37 Obscuration File

static obscuration_file* GetFile ()

~obscuration_file ()

bool Read (obscuration_data& data)

A.38 Obscuration Data

obscuration_data ()
obscuration_data (const obscuration_data& data)
obscuration_data& operator= (const obscuration_data& data)

~obscuration_data ()

static int const CORRECTION_SIZE

void Get (float elevations[CORRECTION_SIZE],
 double fractions[CHANNEL_SIZE][CORRECTION_SIZE]) const
void Set (const float elevations[CORRECTION_SIZE]
 const double fractions[CHANNEL_SIZE][CORRECTION_SIZE])

A.39 Error Corrector

error_correcter ()

~error_correcter ()

bool Correct (hirdsl1c_manager& hirdls1cmanager)

A.40 Error File

static error_file* GetFile ()

~error_file ()

bool Read (error_data& data)

A-9

A.41 Error Data

error_data ()
error_data (const error_data& data)
error_data& operator= (const error_data& data)

~error_data ()

static int const CORRECTION_SIZE

void Get (double elevations[CORRECTION_SIZE],
 double values[CHANNEL_SIZE][CORRECTION_SIZE]) const
void Set (const double elevations[CORRECTION_SIZE]
 const double values[CHANNEL_SIZE][CORRECTION_SIZE])

A.42 L1C Processor

l1c_processor ()

~l1c_processor ()

void Process ()

