HIRDLS SW-OXF-287

High Resolution Dynamics Limb Sounder

Originator: John Barnett ‘Date: 4 June 2001
Subject/Title: Standards and Conventions for Postlaunch SAIL Tasks
Contents:

This document outlines conventions which SAIL tasks used after launch
will need to adhere to in order to facilitate memory verification,
configuration control, and the ability of ground controllers to detect
problems.

Key Words: SAIL

Atmospheric, Oceanic and Planetary Physics,
Oxford University, Department of Physics,
Clarendon Laboratory,

Oxford OX1 3PU
United Kingdom

This document outlines conventions which SAIL tasks used after launch will
need to adhere to. :

1. SAIL Task Identified numbers.

This is composed of a 6 character hex string (valid characters 0-9 and A-F,
not case sensitive). Character 1 (counting from left) gives the type of task,
according to the following list:

Instrument integration and test
Instrument prelaunch calibration
Spacecraft integration and test
Postlaunch activation tasks
Baseline postlaunch scanner task
Sunshield postlaunch scanner task
Schedule postlaunch scanner task
Heater postlaunch scanner task
Housekeeping postlaunch scanner task
Telemetry postlaunch task
Postlaunch calibration tests (pitch down, phasing etc)
Postlaunch hardware test task
available to be defined

available to be defined

Other

MEBOQWD OO ULH WN

Characters 2-4 give the task number; this allows 4096 different tasks within
each category.

Characters 5-6 give the version number; this allows for 256 versions. If this
needs to be exceeded, a new number should be started.

A task should be included only once; e.g. where the same task is used in
various prelaunch categories then after launch for hardware testing, it
might be given the category of first use.

2. File names and extensions.

These will consist of a name followed by a period then an extension;
characters must not be assumed to be case sensitive (to avoid problems
transferring to and from DOS systems). The ID string has already been defined
to use only hex characters; only 0-9, A-Z, _ and - may be used elsewhere since
other characters sometimes cause special actions with various operating
systems.

The name is composed of the 6 character task ID followed by up to 26 other
characters. This is to enable users to use their own naming conventions but to
retain the identifier. It has the advantage that under DOS (which is currently
used by the SAIL compiler and assembler), the identifier will normally be part
of the truncated name (e.g. Al2345~1l.sai). Different names should not be used
with the same ID, since for many purposes the ID alone will be bused to
identify the task.

The extensions may be up to 3 characters and the following have so far been
defined:
sai SAIL source code
a, pl, p2, log intermediate files generated during the SAIL compilation
and assembly
c SAIL code relocatable image for loading into the IPU
d SAIL data relocatable image for loading into the IPU

3. Use of ID in SAIL tasks

The first global variable shall be an int (32 bit integer) into which the
task will write the 6 hex character identifier; we will call it IDcblock for
the purposes of this document.

The second global variable shall be an int (32 bit integer) initially
containing the task 6 hex character identifier; we will call it IDdblock.

The first statement in main shall be of the form

IDcblock=taskID; where taskID has been defined in a #define statement, or
IDcblock=0xC12345; where C12345 is the example ID;

(note that variable names are not case-sensitive).

The statement must be exactly of this form to allow extraction of the ID
value from the .c code image file. e.g. IDcblock=0xC00000 ! 0x012345; is not
allowed.

The result of these requirements is that the ID can be simply extracted from
the code and data image files as a check on the string in the file name, the
same can be done with memory dumps, and inspection of the first 4 bytes of the
memory dump of data block will reveal whether the task has ever run and if so
with what task ID.

e.g. a minimum task is
#define taskID C12345
int IDcblock;
int IDdblock = taskID;
main() {
IDcblock=taskID;
}

Any program extracting the identifier from the code file, will need to be
able to skip over and instructions which initialise variables in main. This it
will do by decoding the instruction type, then the address modes, then
calculate the instruction length. It will only recognise a subset of possible
instruction types. It will do this until it finds an instruction of the
required form to be IDcblock=taskID (it will be a MOV 122222222, 1lE where
?22?22?? is the ID). Hence it would be possible to place certain statements
before the IDcblock=taskID. The only useful statement is probably of the form
oldIDcblock=IDcblock, where oldIDcblock is used to record the previous contents
of IDcblock so that the task may determine whether the data area has been used
before and by what task. Such a program has been written and functions
successfully.

(Y

4. Data block memory verification marker.

After launch it will sometimes be necessary to verify the integrity of task
images, including when they have been resident in memory for a long period,
since procedural, hardware or software errors could conceivably have caused a
change. This includes the ability to verify tasks that have been run, so
will have different values for variables from those initially present in the
loaded memory image files.

There is no problem in verify code blocks since they should be unchanged by
being run.

The only areas of data blocks which must be unchanged are those which the
user does not want to be changed (e.g. because they are calibration constants
used within the task); to achieve that they will declare the variables global
and given them initial values. [Note that where variables are given initial
values with function, then those values are written in each call from values
stored within the code space.] In order to allow verification, the following
rule must be complied with:

Variables requiring verification must be put at the start of the global
variables, followed by an int initialised to 89ABCDEF.

Additional groups of variable to be verified can be specified by preceding
them by an int initialised to 89ABCDEE and following by an int initialised to
89ABCDEF.

In the special case of there being no int containing 89ABCDEF, then no
verification will take place, other than of the task identifier in the second
global int.

The variables containing 89ABCDEE and 89ABCDEF may be used for other
purposes by the SAIL task (i.e. used as a variable) since they will only be
searched for by ground software in the data block image file.

The choice as to whether a variable is to be verified or not is important.
If it is to be verified, then it must not be changed by SAIL, since it would
then fail verification. Hence global variables that are used as general working
variables must not be verified. Conversely, items which the task requires to
have certain values must either be verified or be set up by an executable
statement each run of the task.

5. Error and status flags

Most SAIL tasks will check for error conditions and need to report them by
setting flag bits and possibly displaying values in parameter slots. Sometimes
they will then suspend themselves, and on other occasions they will continue
operating. Frequently these error conditions will be undetectable in the very
limited Engineering Data Stream telemetry available to the ground controller
during the few minutes of each real-time contact at intervals of one to two
orbit periods. In other cases, elaborate code would be needed on the ground to
detect the same condition, particularly since not even the Science Data Stream
will contain all of the telemetry available to SAIL tasks.

A

Tasks will set flags in two ways:

1) In parameter slot E, tasks will use the lower order 16 bits to display
error flags for the duration of the error; in some cases this will be just
for 1 maf.

2) In parameter slot F, tasks will use the lower order 16 bits to display
errors which have occurred at some time in the last approximately 6 hours.
The bit assignment must be the same as for slot E.

The Engineering Data Stream will only contain parameter F for each task,
whereas the Science Data Stream will contain parameters E and F each major
frame.

It is proposed that bits 0-7 be reserved for serious errors where the
ground controller would attempt to contact one of the HIRDLS team by telephone,

whereas 8-F would be reserved for less serious errors where an email message
would suffice.

Possible simple SAIL code to achieve this is as follows:

int cumflags[4]; // cumulative flags, in global in order to preserve them
// - need to be zeroed at start of task

// Bach maf display flags accumulated this maf:
_shared([baseaddress+14] = flagbits;

flagbits=0; // clear them for next maf

// display accumulated flag bits for at least 5.24 hours and at most 6.99 hours
// (32768 major frames is 6.99 hours):

subframe = maf >> 13 & 3; // subframe is an int variable
if (_maf & Ox1FFF == 0) { cumflags[subframe] = 0; } // zero periodically
cumflags[subframe] = cumflags{subframe] | flagbits; // OR in any errors

_shared(baseaddress+15] = ‘
cumflags[0] | cumflags(l] | cumflags[2] | cumflags(3];

JM’M‘ 0/7‘ /05 ac(/“ccff’ﬂé‘c//’—"\ a.okcé‘ C'VL\/\ da—rw‘r

Caron s 3&‘/‘:‘?-”('11’ CA’C 'ﬂ/—"('w*mvw e 77@(;»(4- '/7/2""./&-\ J
e HETER

